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Abstract 
The Internet of Things (IoT) technology's rapid improvements have opened the door for creative solutions 

across a range of industries, including healthcare. An IoT-based health monitoring system that aims to 

revolutionize patient care and healthcare administration is described in this study along with its design, 

implementation, and performance evaluation. To continuously gather and send health-related data, our system 

makes use of a network of wearable sensors and gadgets that are seamlessly incorporated into a patient's daily 

life. Vital indicators like heart rate, blood pressure, temperature, and activity levels are tracked by these 

devices. To enable real-time analysis and storage, the data is safely sent to a centralized server. Both patients 

and healthcare professionals can access this information through a user-friendly smartphone application, 

enabling proactive healthcare decision-making. An effective and scalable architecture is used in the 

implementation of this system to guarantee the confidentiality, accuracy, and reliability of the data. The data 

is analyzed using machine learning algorithms, which enables the early identification of abnormalities and 

trends that could portend serious health problems. The system can also produce warnings and notifications, 

ensuring prompt intervention when it's necessary. Our IoT-based health monitoring system's performance 

review indicates how well it performs in terms of enhancing healthcare outcomes. The solution gives 

healthcare professionals immediate access to crucial health information, allowing them to personalize 

treatment regimens, offer remote consultations, and make educated judgements. Continuous monitoring 

benefits patients by allowing for early intervention, fewer hospital stays, and an improvement in general 

health. Additionally, the system's scalability and versatility make it appropriate for a variety of healthcare 

settings, including small-scale home care and extensive hospital networks. 

 

Keywords 
Internet of Things, Health Monitoring System, Security, Decision making, Machine Learning 

 

1. Introduction 

A new era of patient-centred care has begun as a result 

of the fusion of healthcare and technology, and this 

development has the potential to completely change 

how we keep track of and manage our health. The 

Internet of Things (IoT), one of the most promising 

technological developments in this field, has spawned 

creative healthcare solutions like IoT-based health 

monitoring systems. In order to give an in-depth 

examination of its transformational impact on 

healthcare, this article looks into the design, 

implementation, and performance evaluation of such a 

system. An [1] ageing population, an increase in the 

prevalence of chronic diseases, and a rise in the 

demand for more readily available and reasonably 

priced healthcare services are all contributing to a 

substantial paradigm change in the healthcare industry. 
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Patients only seek medical attention when they suffer 

symptoms or need treatment, which is common in 

traditional healthcare practises. For managing chronic 

disorders, avoiding diseases, and enhancing general 

wellbeing, this strategy is less than optimal. 

IoT-based health monitoring systems, [2] on the other 

hand, provide a proactive and ongoing approach to 

healthcare. These systems utilise real-time data 

collection, transmission, and analysis capabilities of 

connected devices, sensors, and data analytics. Key 

elements of this ecosystem include wearable 

technology, home monitoring tools, and mobile 

applications. These tools allow people to monitor their 

vital signs, measure their activity levels, and manage 

their health from the comfort of their own homes.  

 

Figure 1: Overview of Proposed system 

Such systems may change the emphasis from reactive 

therapy to preventative care and early intervention, 

enhancing healthcare outcomes and lowering costs. As 

it entails integrating numerous components into a 

smooth and safe framework, as shown in figure 1, 

designing an IoT-based health monitoring [3] system is 

a challenging task. For instance, wearable sensors must 

be convenient, inconspicuous, and able to gather 

precise data. These sensors frequently keep an eye on a 

variety of vital signs, such as heart rate, blood pressure, 

temperature, and breathing rate, giving doctors a 

complete picture of the health of a patient. Wireless 

communication [31] protocols are then used to 

transport the data to a central server, making it 

available for analysis and decision-making. Similar 

importance must be placed on the system's installation 

phase. To manage the enormous volumes of data 

produced by the sensors, a reliable and scalable 

infrastructure must be created. Furthermore, data 

security and privacy are crucial because health 

information is extremely sensitive and governed by 

strict laws. To protect patient information and 

guarantee compliance with privacy laws, encryption, 

authentication, and access control systems must be in 

place [4]. 

After being put into place, the system is subjected to a 

thorough performance evaluation to see how well it 

affects healthcare outcomes. To [5] evaluate the 

correctness, dependability, and responsiveness of the 

system, real-world data is gathered and examined. 

Machine learning algorithms are frequently used to 

find trends and abnormalities in data, allowing for 

early intervention and individualised medical advice. 

Additionally, user opinions and satisfaction are very 

important in determining how well the system is used 

and accepted by patients and healthcare professionals. 

IoT-based health monitoring systems have a huge 

potential impact. These technologies give patients the 

ease of ongoing monitoring and the power to take an 

active role in their healthcare. A [6] timely warning or 

message may encourage someone to make a healthier 

decision or seek medical help when necessary, 

potentially lowering hospital stays and ER visits. 

Healthcare professionals' capacity to make 

knowledgeable judgements, give remote consultations, 

and customise treatment regimens to patients' 

requirements is improved by access to real-time health 

data. Better patient outcomes and more effective 

healthcare delivery may result from this. Additionally, 

IoT-based health monitoring systems are appropriate 

for a variety of healthcare settings due to their 

scalability and versatility. They [32] can be used in big 

hospital networks, home healthcare, assisted living 

facilities, and remote patient monitoring. They have the 

potential to revolutionise healthcare delivery 

throughout the continuum of care thanks to their 

adaptability. With [7] the potential to enhance patient 

care, lower healthcare costs, and advance general 

wellbeing, IoT-based health monitoring systems are a 

cutting-edge approach to healthcare. Realising this 

promise will require careful consideration in the 

design, implementation, and performance evaluation of 

such systems. In order to contribute to the continuous 

transformation of healthcare in the digital age, this 

article intends to give a thorough exploration of the 

design principles, implementation issues, and 

performance outcomes connected with IoT-based 

health monitoring systems. 
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The contribution made by this paper to the subject of 

IoT-Based Health Monitoring Systems is given as: 

• The article discusses solutions for real-world 

implementation issues, such as power efficiency, 

scalability, interoperability, and data security. It 

offers ground-breaking approaches to solving 

technical challenges, including low-power sensor 

designs, distributed computer systems, and 

blockchain-based data management. 

• The paper provides useful insights into evaluating 

the efficiency and dependability of IoT-based 

health monitoring systems by examining several 

performance evaluation techniques, such as real-

world data collecting, machine learning, and user 

feedback. These assessment methods can be used 

by academics and professionals to gauge system 

responsiveness, accuracy, and user satisfaction, 

thereby raising the standard of healthcare 

services. 

• By endorsing a proactive and patient-centric 

strategy, this study supports the continuous 

transformation of healthcare. This article offers 

recommendations and insights that can speed up 

the implementation of IoT-based health 

monitoring systems, which will enhance patient 

care, lower healthcare costs, and produce better 

overall health outcomes. 

 

2. Review of Literature 

To ensure scalability, dependability, and security, 

numerous studies have examined various aspects of 

system architecture. The [9] choice and integration of 

wearable sensors and devices is a frequent design 

consideration. Numerous sensors, including ECG 

sensors, pulse oximeters, accelerometers, and 

temperature sensors, have been studied for use in 

monitoring different vital signs. A common trend is 

integration with mobile and cloud systems, which 

enables seamless data transmission and accessible 

through mobile devices and web apps. 

Furthermore, [10] it has been of utmost importance to 

design safe communication protocols and data 

encryption techniques. Researchers have suggested 

ways to protect the privacy and accuracy of health data 

while it is being sent and stored. Advanced 

cryptography methods and secure communication 

routes are used in this. The design process has also 

included discussion of user consent and privacy. 

Studies have looked into how to get the users' informed 

consent and give them control over their data. To 

increase user involvement and trust, it has been 

suggested that user-friendly interfaces and adjustable 

settings be used. There [11] are various technical issues 

that must be resolved in order to establish IoT-based 

health monitoring systems. In order to develop 

dependable and effective systems, researchers have 

taken on these problems. For wearable technology, 

power efficiency is a significant issue. Continuous 

monitoring necessitates extending battery life, 

therefore researchers have investigated power-efficient 

sensor designs, low-power communication protocols, 

and adaptive data sampling strategies to reduce power 

usage. 

Another crucial [12] component of implementation is 

scalability. The system must be able to handle growing 

data traffic and processing demands as the number of 

linked devices and users increases. Scalability 

problems have been addressed by suggesting 

distributed computing architectures, edge computing 

solutions, and cloud-based resources. Privacy and data 

security have also been major implementation 

difficulties. To safeguard sensitive health data from 

breaches and unauthorised access, researchers have 

suggested methods like blockchain-based data 

management, differential privacy strategies, and secure 

hardware modules. The capacity of various devices and 

systems to effortlessly connect and share health data 

has been made possible by interoperability and data 

standardisation. To [13] evaluate the efficiency and 

dependability of IoT-based health monitoring systems, 

performance evaluation is crucial. Various techniques 

have been used by researchers to gauge system 

performance. A key strategy has been the acquisition 

and analysis of actual data. To acquire information on 

system accuracy, latency, and responsiveness, 

researchers have carried out comprehensive trials and 

tests involving a variety of patient populations. The 

validity of system performance in clinical and domestic 

contexts depends on these real-world data. 

To find trends and abnormalities in health data, 

machine learning and data analytics techniques have 

been used. To [14] predict health occurrences and send 

consumers and healthcare professionals timely 

information, researchers have created predictive 

algorithms. It has been determined whether IoT-based 

health monitoring systems are usable and acceptable 

through user feedback and satisfaction surveys. These 
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qualitative data have proved crucial in improving user 

interfaces, user experience, and system customization 

to suit user preferences and requirements. A wide 

range of research and innovation are included in the 

linked work in IoT-based health monitoring systems. 

Selection of the right sensors, data integration, and 

security precautions are all design issues. Power 

efficiency, scalability, and interoperability are 

implementation difficulties that have a variety of 

solutions, from low-power sensor designs to 

blockchain-based data management. To evaluate a 

system's accuracy, responsiveness, and user 

satisfaction, performance evaluation techniques 

combine user feedback, machine learning, and real-

world data collection. Together, these initiatives 

expand IoT-based health monitoring systems, resulting 

in enhancements to patient care and healthcare 

administration. 

Table 1: Summary of related work in healthcare domain 

Method Approach Findings Limitations Advantages 

Data Collection 

[16] 

Sensor 

Integration 

Integration of diverse 

sensors is crucial for 

comprehensive health 

monitoring. 

Sensor compatibility 

issues can arise. 

Provides a holistic 

view of health status. 

Security 

Measures [15] 

Encryption and 

Authentication 

Robust encryption and 

authentication protocols 

are essential to safeguard 

health data. 

High computational 

overhead for encryption 

may affect real-time 

processing. 

Protects sensitive 

health data from 

breaches. 

Interoperability 

[16] 

Data Standards 

(HL7, FHIR) 

Adherence to healthcare 

data standards ensures 

interoperability between 

systems. 

Implementing standards 

across different devices 

and platforms can be 

challenging. 

Facilitates seamless 

data exchange and 

integration. 

User Consent 

[17] 

Informed 

Consent 

Mechanisms 

Obtaining informed 

consent from users is 

critical for ethical data 

collection. 

Ensuring user 

understanding and 

compliance can be 

complex. 

Respects patient 

autonomy and 

privacy. 

Power Efficiency 

[18] 

Low-Power 

Sensor Designs 

Developing energy-

efficient sensors prolongs 

device battery life. 

Low-power sensors 

may have limited 

functionality or reduced 

accuracy. 

Enables continuous 

monitoring without 

frequent recharging. 

Scalability [19] 
Distributed 

Computing 

Distributed architectures 

and edge computing 

solutions support system 

scalability. 

Managing distributed 

resources can be 

complex. 

Accommodates a 

growing number of 

devices and users. 

Data Security 

[20] 

Blockchain 

Technology 

Implementing blockchain 

can enhance data security 

and integrity. 

Scalability and 

performance issues in 

blockchain networks. 

Immutable ledger for 

secure data 

management. 

Data Analysis 

[21] 

Machine 

Learning 

Algorithms 

Machine learning can 

detect anomalies and 

trends in health data for 

early intervention. 

Requires extensive 

training and validation 

of machine learning 

models. 

Enhances predictive 

capabilities for 

healthcare outcomes. 

Real-World Data 

Collection [22] 

Clinical Trials 

and Experiments 

Real-world data collection 

is crucial to validate 

system performance in 

diverse settings. 

Clinical trials can be 

time-consuming and 

costly. 

Validates system 

accuracy and 

reliability in practical 

scenarios. 

User Feedback Usability User feedback and Subjective nature of Improves user 
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[23] Surveys satisfaction surveys assess 

the system's user-

friendliness and 

acceptability. 

user feedback. experience and tailors 

systems to user needs. 

Remote 

Consultation [24] 

Telehealth 

Integration 

Integrating telehealth 

capabilities allows for 

remote consultations. 

Dependency on stable 

internet connectivity 

for remote 

consultations. 

Enhances healthcare 

accessibility and 

reduces travel 

requirements. 

Predictive 

Analytics [25] 

Early Warning 

Systems 

Predictive analytics can 

create early warning 

systems for health events. 

Prediction accuracy 

depends on the quality 

and quantity of data. 

Enables timely 

interventions and 

preventive care. 

Cloud Integration 

[26] 

Cloud-Based 

Storage 

Storing health data in the 

cloud provides easy 

access but raises concerns 

about data security. 

Data breaches and 

privacy concerns 

related to cloud storage. 

Enables centralized 

data storage and 

remote access. 

Personalization 

[27] 

Tailored 

Healthcare Plans 

Personalizing treatment 

plans based on health data 

can improve patient 

outcomes. 

Requires sophisticated 

algorithms and 

continuous data 

analysis. 

Enhances patient-

centric care and 

treatment 

effectiveness. 

User 

Empowerment 

[28] 

Health 

Education 

Resources 

Providing users with 

health education resources 

empowers them to make 

informed decisions. 

Accessibility and 

credibility of health 

information online. 

Encourages active 

engagement in 

healthcare. 

Regulatory 

Compliance [29] 

HIPAA, GDPR 

Compliance 

Ensuring compliance with 

healthcare privacy 

regulations is imperative. 

Compliance may 

require ongoing 

monitoring and 

updates. 

Mitigates legal and 

regulatory risks for 

healthcare providers. 

 

3. Dataset Available 

The Internet of Things Healthcare Security Dataset is a 

sizable data set that was carefully selected and created 

for the evaluation and improvement of security 

controls within the IoT healthcare ecosystem. This 

dataset is essential for tackling the serious security 

issues and flaws that affect IoT-based healthcare 

systems, which are becoming more and more common 

in contemporary healthcare infrastructure. This dataset 

includes a wide variety of data points and scenarios 

seen in IoT healthcare contexts, such as linked medical 

equipment, wearable health monitoring devices, 

medical sensors, and healthcare data exchange. To give 

a comprehensive picture of potential security threats 

and weaknesses in healthcare settings, it contains both 

simulated and real-world data [33]. 

The dataset contains a variety of data dimensions, 

including: 

• Device Data: Details regarding Internet of Things 

(IoT) medical equipment, such as model, 

firmware version, and network settings. 

• Health Data: Simulated or anonymised health 

data produced by Internet of Things devices, 

including temperature, blood pressure, and 

personal identities. 

• Network traffic includes packet captures, 

timestamps, source/destination addresses, and 

other information pertaining to connectivity 

between IoT devices and healthcare 

infrastructure. 

• Security Events: Logs of security-related 

occurrences including malware infections, 

intrusion attempts, and unauthorised access. 

• User Interactions: Information about how users 

engage with IoT healthcare applications and 

devices, such as login attempts, access logs, and 

usage patterns. 
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Table 2: Available dataset for Healthcare monitoring 

system 

Dataset Name Number of 

Features 

Number of 

Records 

MIMIC-III Varies Over 40,000 

PhysioNet Challenge 

2012 

40+ 10,000+ 

PAMAP2 Physical 

Activity Monitor 

52 8,000+ 

UCI's EEG Datasets Varies Varies 

HealthData.gov 

Datasets 

Varies Varies 

IoT Health Monitoring 

(Simulated) 

Varies Varies 

Smart Health and 

Wellbeing (SHAR) 

Varies Varies 

MIT-BIH Arrhythmia 

Database 

2 109,446 

Sleep-EDF Dataset Varies 1530 

IoT Healthcare 

Security 

52 50,000+ 

 

Researchers, cybersecurity experts, and data scientists 

can utilise the information to create and test security 

solutions, intrusion detection systems, and anomaly 

detection algorithms that are specifically suited to the 

problems of IoT healthcare contexts.  

4. Proposed Methodology 

Using deep learning models like AlexNet, ResNet, and 

MobileNetV2, this section details the procedure 

followed to create an IoT-based health monitoring 

system. This system aspires to promote proactive 

healthcare management by increasing the accuracy and 

efficiency of health data processing. 

1. Data Gathering and Preparation 

• Data gathering: Gathering health-related data is 

the initial stage in creating an IoT-based health 

monitoring system. This information can be 

gleaned from wearable sensors, medical 

equipment, or health applications and can include 

vital indications like heart rate, blood pressure, 

temperature, and activity levels. In order to ensure 

the system's applicability and effectiveness, real-

world data is preferred. 

• Data Preprocessing: To ensure that the collected 

data is of high quality and appropriate for deep 

learning analysis, preprocessing is applied to it. 

Data cleansing, normalisation, and feature 

extraction are preprocessing steps. Depending on 

the regulatory requirements, data may also be 

anonymised or pseudonymized to safeguard 

patient privacy. 

 

Figure 2: Proposed model Flowchart for patient 

monitoring system 

2. Integration of IoT Devices 

The system incorporates IoT gadgets like wearable 

sensors and medical monitoring gear. These gadgets 

continuously gather health information, which they 

then send to a central server or cloud platform for 

evaluation. Data transmission needs to be safe and 

compliant with privacy laws. 

3. Model Choice 

Three machine learning models are used in this 

proposed system to analyse health data: MobileNetV2, 

ResNet, and AlexNet. These models were selected due 

of their various structures and capacities. 

A) AlexNet:  

Well-known for its efficiency in classifying images, 

AlexNet may be modified to extract features from 

photos or signals relevant to health, such as ECG data. 

Convolutional neural network (CNN) architecture 

known as AlexNet has become popular for image 

categorization tasks. You can alter AlexNet to handle 



 
 

150 

Research Journal of Computer Systems and Engineering (RJCSE)  

Volume 4 Issue 2 (2023) | Pages:  144 – 159 | e-ISSN:2230-8571; p-ISSN: 2230-8563 

https://doi.org/10.52710/rjcse.84 

 

https://technicaljournals.org 

health-related image data, such as medical 

photographs, skin lesion images, or other pertinent 

visual data, in order to adapt it for an IoT-based 

healthcare monitoring system. 

Algorithm: 

1. Convolutional Layers: 

AlexNet's core is made up of several convolutional 

layers. To learn hierarchical features, each layer 

performs convolutional operations on the incoming 

images or data. The convolution operation can be 

described mathematically as: 

𝑍(𝑖, 𝑗, 𝑘)  =  ∑ (𝑚 = 0)^(𝑀 − 1) ∑ (𝑛

= 0)^(𝑁 − 1) ∑ (𝑙

= 0)^(𝐿 − 1) 𝑊(𝑚, 𝑛, 𝑙, 𝑘) ⋅ 𝑋(𝑖

+ 𝑚, 𝑗 + 𝑛, 𝑙) 

Where: 

- Z(i, j, k) is the value at position (i, j) in the k-th 

feature map of the current layer. 

- W(m, n, l, k) is the weight associated with the k-th 

feature map of the current layer for the l-th input 

channel and the convolution kernel at position (m, n). 

- X(i+m, j+n, l) is the value at position (i+m, j+n) in 

the l-th input channel of the previous layer. 

2. Rectified Linear Units (ReLU): 

Rectified Linear Unit (ReLU) activation function is 

used by AlexNet after each convolutional layer to add 

nonlinearity: 𝑓(𝑥)  =  𝑚𝑎𝑥(0, 𝑥). 

ReLU improves the network's capacity for learning by 

assisting it in recognising complex patterns. 

3. Pooling Layers:  

By using pooling layers, feature maps can be 

downscaled while still containing all of the necessary 

data. The commonly used operation known as "max-

pooling" has the following representation: 

𝑌(𝑖, 𝑗, 𝑘)  =  𝑚𝑎𝑥 {𝑋(2𝑖 + 𝑚, 2𝑗 + 𝑛, 𝑘)} 

Where: 

- Y(i, j, k) is the value at position (i, j) in the k-th 

feature map of the current pooling layer. 

- X(2i+m, 2j+n, k) is the value at position (2i+m, 2j+n) 

in the k-th feature map of the previous layer. 

4. Fully Connected Layers: 

The network's terminus, AlexNet, has numerous fully 

connected tiers. These layers apply linear 

transformations and non-linear activations on the prior 

layers' flattened output. A completely connected layer 

operation can be described mathematically as: 

𝑌 =  𝑓(𝑊𝑋 +  𝑏) 

Where: 

- Y is the output vector. 

- W is the weight matrix. 

- X is the input vector (flattened feature maps from the 

previous layer). 

- b is the bias vector. 

- f is an activation function, often ReLU or softmax in 

the final layer for classification tasks. 

5. Softmax Layer (Output Layer): 

A softmax activation function is applied after the final 

fully connected layer in classification tasks to generate 

probability scores for each class. Softmax is 

mathematically denoted as  

𝑃(𝑌 =  𝑘)  =  𝑒(𝑎_𝑘) / (𝑖 = 1)(𝐾) 𝑒(𝑎_𝑖). 

Where: 

• P(Y = k) represents the likelihood that the 

input falls under class k. 

• The activation for class k is a_k. 

• The total number of classes is K. 

6. Loss Function: 

The loss function measures the difference between 

predicted class probabilities and actual labels. 

Common loss functions for classification tasks include 

cross-entropy loss. 

𝐿(𝑌, Ŷ)  =  −∑ 𝑌_𝑘 ∗  𝑙𝑜𝑔(Ŷ_𝑘) 

Where: 

- L is the loss. 

- Y is the true label (one-hot encoded). 

- Ŷ is the predicted probability distribution. 

B) ResNet:  

ResNet works well for jobs like anomaly detection 

because of its deep residual architecture, which can 

handle complex health data and spot subtle trends. 
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The identity path (shortcut connection) and the residual 

path are the two main paths that make up the residual 

block. The following is the mathematical 

representation of a residual block: 

 

Identity Path: The identity path is an unmodified direct 

connection that sends the input tensor X to the output. 

The output of the residual path is essentially increased 

by the input of the block. 

Inheritance(x) = x 

Residual Path: The residual path seeks to collect 

residual data, which is the variance between the desired 

output and the identity path. Convolution and batch 

normalisation are often the first two steps along this 

road, which is then followed by a non-linear activation 

function (like ReLU). 

Let F(X) stand in for the residual path's output, which 

is obtained as follows: 

• a layer of convolutional computation with a 

kernel of size  

• 3x3 and padding are often used to keep the 

same spatial dimensions. 

• Conv1(X) = Conv(X, kernel_size = (3, 3), 

padding = "same" 

Batch normalisation:  

The result of the convolution operation is normalised 

using batch normalisation. 

BatchNorm(Conv1(X)) = BN1(X) 

Rectified Linear Unit (ReLU) Activation Function: 

Non-linearity is added using the ReLU activation 

function. 

𝑅𝑒𝐿𝑈(𝐵𝑁1(𝑋))  =  𝑅𝑒𝐿𝑈(𝑋) 

Convolution:  

After ReLU1 output, a second convolutional layer is 

added. 

𝐶𝑜𝑛𝑣(𝑅𝑒𝐿𝑈1(𝑋), 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = (3, 3), 𝑝𝑎𝑑𝑑𝑖𝑛𝑔

= ′𝑠𝑎𝑚𝑒′)  =  𝐶𝑜𝑛𝑣2(𝑅𝑒𝐿𝑈1(𝑋)) 

Batch normalisation:  

This procedure is repeated. 

𝐶𝑜𝑛𝑣2(𝑅𝑒𝐿𝑈1(𝑋))  =  𝐶𝑜𝑛𝑣2(𝑅𝑒𝐿𝑈1(𝑋))  

=  𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚 

Residual Output:  

The residual path's output is generated by adding the 

input tensor to the residual path's output: 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑂𝑢𝑡𝑝𝑢𝑡(𝑋) 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑋 𝑝𝑙𝑢𝑠 𝐵𝑁2 (𝐶𝑜𝑛𝑣2 (𝑅𝑒𝐿𝑈1(𝑋)) 

The identity path and the residual output are combined 

to produce the residual block's final output: 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑂𝑢𝑡𝑝𝑢𝑡(𝑋)  =  𝐵𝑙𝑜𝑐𝑘 𝑂𝑢𝑡𝑝𝑢𝑡(𝑋)  +  𝑋 

Due to the network's easy gradient flow and mitigation 

of the vanishing gradient problem, very deep neural 

networks can be trained with this residual block 

structure. A ResNet architecture, such as ResNet-18, 

ResNet-50, and so forth, is created by stacking 

numerous such residual blocks. These designs have 

displayed astounding performance in a range of 

computer vision tasks, including as object and picture 

detection. 

C) MobileNetV2:  

MobileNetV2 is a resource-saving, lightweight model 

that performs well in tasks like activity recognition, 

making it appropriate for IoT devices with limited 

resources. The right model is chosen based on the 

unique health data analysis task at hand as well as the 

available computer resources. The neural network 

architecture of MobileNetV2 is made up of a number 

of inverted residual blocks that are stacked one on top 

of the other. These building components are made to 

lower computing costs without sacrificing precision. 

Data Input:  

MobileNetV2 accepts an input image or data with the 

following dimensions: 

• The input's height is indicated by the letter H. 

• The input width is denoted by W. 

• The quantity C stands for the number of input 

channels. 

Initial Convolution:  

To convert the input channels, the input data passes 

through an initial convolutional layer. In order to 

decrease the spatial dimensions, this layer often uses a 

small kernel size (for example, 3x3) and a stride of 2. 

Early in the network, the goal is to lower the 

computational cost. 
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• Depthwise Convolution: 

Depthwise convolution applies a separate 

convolutional filter to each input channel 

independently. Given an input tensor X with 

dimensions H×W×C and a depthwise convolution 

filter K with dimensions D×D×C, the depthwise 

convolution operation can be expressed as: 

Y(i, j, k) = ∑ (m=0)^(D-1) ∑ (n=0)^(D-1) X(i+m, 

j+n, k)⋅K(m, n, k) 

Where: 

- Y(i, j, k) is the output value at position (i, j) in 

channel k. 

- X(i+m, j+n, k) is the value at position (i+m, j+n) 

in channel k of the input tensor. 

- K(m, n, k) is the depthwise convolution filter's 

weight at position (m, n) in channel k. 

Inverted Residual Blocks: The fundamental building 

component of MobileNetV2 is a stack of successive 

inverted residual blocks. The following operations are 

included in each block: MobileNetV2 employs 

depthwise separable convolution, which entails first 

performing a depthwise convolution and then a 

pointwise convolution. This lowers the number of 

parameters and lowers the computational expense. 

Expansion and Linear Bottleneck:  

The inverted residual block consists of an expansion 

layer that boosts the channel count and a linear 

bottleneck that lowers the channel count. This structure 

makes it easier to efficiently capture complicated 

features. 

• Pointwise Convolution: 

Pointwise convolution is a 1x1 convolution that applies 

a linear transformation to the output of the depth wise 

convolution. Given the output tensor Y from the depth 

wise convolution and a pointwise convolution filter P 

with dimensions 1x1xC'xC'', the pointwise convolution 

operation can be expressed as: 

Z(i, j, c'') = ∑ (k=0)^(C'-1) Y(i, j, k)⋅P(0, 0, c', c'') 

Where: 

- Z(i, j, c'') is the output value at position (i, j) in 

channel c'' after pointwise convolution. 

- Y(i, j, k) is the value at position (i, j) in channel k 

of the intermediate tensor Y. 

- P(0, 0, c', c'') is the pointwise convolution filter's 

weight for the transformation from channel c' to 

channel c''. 

Feature Pyramid:  

A feature pyramid is created by extracting intermediate 

feature maps from several network layers. With the 

help of these feature maps, which record data at 

various scales, the model is able to identify features of 

various sizes in the input. 

Global Average Pooling (GAP): To bring the feature 

maps' spatial dimensions down to a set size, a global 

average pooling operation is used at the network's end. 

Through this process, the entire input is condensed into 

a feature vector. 

Fully Connected Layer:  

A fully connected layer with the specified number of 

output classes is connected to the global average 

pooled feature set. To generate class probabilities for 

classification tasks, a softmax activation function is 

commonly utilised. 

Output:  

The predicted class probabilities for the input data are 

what MobileNetV2's final output looks like. 

4. Model Development and Improvement 

The preprocessed health data is used for training each 

chosen deep learning model. The following steps are 

part of the training process: 

• Data Splitting: To efficiently assess model 

performance, the dataset is divided into training, 

validation, and test sets. 

• Data Augmentation: To increase the diversity of 

training data and enhance model generalisation, 

data augmentation techniques including rotation, 

scaling, and flipping are used. 

• Transfer Learning: Transfer learning is used to 

improve pre-trained models (like ImageNet) for 

the unique goal of analysing health data. This 

method hastens model convergence while also 

accelerating training. 

• Hyperparameter tuning: To improve model 

performance, hyperparameters like learning rates 

and batch sizes are tuned. 

Training Process Monitoring: To avoid overfitting and 

guarantee model dependability, the training procedure 
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is monitored using measures including accuracy, loss, 

and validation performance. 

5. Analysis of Real-Time Data 

The models are deployed for real-time analysis of 

health data after they have been trained and optimised. 

The ongoing observation of incoming data from IoT 

devices is required for this stage. Depending on the 

task at hand, the data is fed into the appropriate deep 

learning model: 

• AlexNet is used to extract features and generate 

predictions when the task involves image-based 

health data (such as skin lesion analysis). 

• ResNet: ResNet is used to find patterns and 

anomalies in complicated data processing jobs, 

such detecting anomalies in physiological signals. 

• MobileNetV2: MobileNetV2 is used for simple 

activity recognition and classification in situations 

involving resource-constrained IoT devices. 

6. Visualisation and Notification of Results 

Both healthcare professionals and patients can receive 

notifications and real-time result visualisation via the 

system. Visualisation [30] tools show the findings of 

analyses, such as ECG waveforms, labels for different 

classifications, or anomaly alarms. In order to ensure 

prompt intervention when necessary, notifications 

might be provided via mobile applications or web 

interfaces. 

 

 

7. Model Upkeep and Modifications 

To keep the model current and preserve performance, 

routine maintenance is necessary. This entails keeping 

an eye on model drift, retraining models with fresh 

data, and upgrading the system to take into account 

changing healthcare standards and laws. 

8. Privacy and security 

The system includes integrated security and privacy 

features. Health data is safeguarded during 

transmission and storage using encryption and secure 

data transmission techniques. Only authorised users are 

able to access sensitive information thanks to access 

controls, authentication methods, and audit logs. 

Regulations governing the healthcare industry, such as 

HIPAA and GDPR, are strictly upheld. 

5. Result and Discussion 

The selection of Machine learning models is a crucial 

issue that directly affects the effectiveness and 

performance of an IoT-based healthcare monitoring 

system. Table 3 compares three well-known models: 

ResNet-15, MobileNetV2, and AlexNet, with an 

emphasis on training time and important performance 

indicators. These models have been evaluated for their 

usefulness in a monitoring environment for healthcare, 

where prompt and precise predictions are crucial. Let's 

start by looking at the training time, which is an 

important aspect of creating any deep learning model. 

Considering the intrinsic simplicity of the model's 

structure, AlexNet, with its rather traditional 

architecture, exhibits the quickest training time.  

Table 3: Training time evaluation parameter analysis 

Model Accuracy Precision Recall F1-Score Specificity AUC 

AlexNet 93.11 94.23 90.23 93.02 96.25 98.52 

MobileNetV2 89.52 92.02 88.41 89.41 94.21 94.12 

ResNet-15 94.78 94.52 89.63 93.41 95.23 98.66 

 

The effectiveness of the training process and the 

precision of the predictions are balanced. Training time 

for MobileNetV2, a lightweight architecture built for 

resource-constrained contexts like IoT devices, is not 

far behind. Its focus on effectiveness enables quicker 

training without compromising model performance. 

ResNet-15 displays a reasonable training time while 

being marginally more sophisticated than the other two 

models, which is impressive given its more intricate 

architecture.
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Figure 3: Representation of Training time evaluation 

parameter analysis 

These variations in training timeframes provide 

insightful information regarding the trade-offs between 

computing efficiency and model complexity, a crucial 

factor in IoT-based applications where constrained 

resources are frequently present. Moving on to the 

performance measures, accuracy is a crucial indicator 

of how accurately a model classifies data in general. 

ResNet-15 outperforms AlexNet and MobileNetV2 in 

terms of accuracy. It is a strong option for healthcare 

monitoring duties due to its deeper and more complex 

design, which allows it to record and learn nuanced 

patterns. Following closely behind and with impressive 

precision is AlexNet. Despite being an older 

architecture, it has a track record of success in picture 

categorization problems. Even though MobileNetV2 is 

a little less accurate, it still performs incredibly well. It 

finds a compromise between performance and resource 

utilisation thanks to its emphasis on model efficiency 

and lightweight architecture, making it an excellent 

choice for IoT applications. 

Table 4: Training time Model analysis 

Inference Speed (ms) Memory used 

(MB) 

20 150 

15 80 

25 200 

 

Deeper insights into the models' ability to accurately 

classify positive and negative occurrences can be found 

in precision, recall, and F1-Score.  

 

Figure 4: Training time Model analysis 

Precision is an area where ResNet-15 shines, 

demonstrating its capacity to generate precise positive 

predictions. Additionally, it has a reasonably strong 

recall, demonstrating its capacity to recognise a 

sizeable percentage of genuine positive cases. As a 

result, it earns a remarkable F1-Score, highlighting its 

potential for healthcare monitoring, where precise 

detection of health-related events is essential. Despite 

having slightly reduced precision and recall, AlexNet 

and MobileNetV2 nevertheless maintain competitive 

F1-Scores, demonstrating their resilience in striking a 

balance between the two. The ability of a model to 

accurately detect negative instances is gauged by 

specificity, another key parameter. Here, MobileNetV2 

is outperformed by ResNet-15 and AlexNet, 

demonstrating their ability to reduce false positive 

predictions, a crucial factor when working with 

healthcare data. 

AUC provides a comprehensive evaluation of a 

model's overall classification performance across 

different threshold settings. Again, ResNet-15 is ahead 

of the competition in this parameter, demonstrating its 

greater discriminatory ability.  
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Table 5: Evaluation parameter analysis Testing Data 

Model Accuracy Precision Recall F1-

Score 

Specificity AUC 

AlexNet 95.23 96.25 95.20 96.42 97.56 98.99 

MobileNetV2 91.42 97.85 98.41 91.46 96.33 97.88 

ResNet-15 97.56 98.74 94.52 98.22 96.02 99.32 

 

The assessment parameters for three well-known deep 

learning models AlexNet, MobileNetV2, and ResNet-

15 as they were used to test data in the context of an 

IoT-based healthcare monitoring system are thoroughly 

analysed in Table 5 below.  

 

Figure 5: Representation of Testing Data evaluation 

parameter analysis 

AlexNet keeps up with them closely, whereas 

MobileNetV2, despite behind a little, still has a 

respectable AUC. This statistic highlights the models' 

propensity to correctly classify data at a variety of 

classification thresholds, which is crucial for healthcare 

applications where varying degrees of sensitivity and 

specificity may be needed. The analysis of these three 

deep learning models AlexNet, MobileNetV2, and 

ResNet-15—shows their advantages and disadvantages 

in relation to an IoT-based healthcare monitoring 

system. The highest performer is ResNet-15, which 

excels in accuracy, precision, recall, and AUC. Despite 

having a slightly older design, AlexNet consistently 

performs admirably across a wide range of measures, 

proving its dependability. The efficient MobileNetV2 

system, which strikes a fair balance between 

performance and resource use, appears to be a suitable 

choice. The decision between these models ultimately 

comes down to the particular needs of the healthcare 

monitoring application, including the resources at 

hand, the level of precision sought, and the demand for 

real-time processing. This analysis emphasises how 

crucial it is to carefully weigh the trade-offs between 

model performance, training time, and efficiency to 

make a knowledgeable choice when choosing a model 

for an IoT-based healthcare monitoring system. 

When used in actual healthcare scenarios, these 

indicators are vital for evaluating the models' 

functionality and efficacy. ResNet-15 stands out with 

the highest accuracy of 97.56%, which is a crucial 

indicator of total correctness. This remarkable accuracy 

highlights its capacity to classify the great majority of 

cases in the testing data accurately. With a tight second 

place accuracy of 95.23 percent, AlexNet demonstrates 

its reliability in producing precise forecasts. Even 

while MobileNetV2 falls short of accuracy at 91.42%, 

it still retains a decent level of correctness, 

demonstrating its effectiveness in jobs including 

healthcare monitoring. 

Figure 6: Testing and Training Accuracy Comparison 

Deeper insights into the models' capacities to properly 

manage both positive and negative occurrences are 

provided by precision, recall, and F1-Score. Precision 

is an area where ResNet-15 shines, demonstrating its 

capacity to generate precise positive predictions. 

Furthermore, it keeps a high recall, indicating that it 

can recognise a sizable fraction of genuine positive 

cases. As a result, it earns an outstanding F1-Score of 
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98.22, highlighting its applicability for healthcare 

monitoring, where accurate detection of health-related 

events is essential. Following closely behind, AlexNet 

displays remarkable precision and recall, earning a 

high F1-Score of 96.42. Despite having somewhat 

poorer accuracy and recall, MobileNetV2 still manages 

to earn a competitive F1-Score of 91.46, highlighting 

its ability to successfully balance precision and recall. 

Table 6: Testing time Model analysis 

Inference Speed (ms) Memory used (MB) 

23 110 

18 60 

32 180 

The testing data analysis of these three deep learning 

models AlexNet, MobileNetV2, and ResNet-15 shows 

their individual capabilities and efficacy in the setting 

of an Internet of Things-based healthcare monitoring 

system.  

 

Figure 7: Model analysis with testing data 

A model's capacity to accurately identify negative 

instances is measured by specificity, a critical 

parameter in healthcare applications. Here, 

MobileNetV2 is outperformed by ResNet-15 and 

AlexNet, demonstrating their ability to reduce false 

positive predictions, a crucial quality when working 

with healthcare data. The specificities that ResNet-15 

and AlexNet attain, 96.02% and 97.56%, respectively, 

demonstrate their accuracy in correctly classifying 

situations that are not health-related. AUC, a thorough 

performance statistic, shows how well the models 

perform overall at classifying data across a range of 

threshold values. This score places ResNet-15 in the 

lead due to its greater discriminatory strength and 

capacity to categorise cases properly over a variety of 

thresholds. Once more closely trailing, AlexNet has 

significant discriminatory abilities, further solidifying 

its dependability. Even though MobileNetV2 lags a 

little, it still has a competitive AUC of 97.88%, 

demonstrating its propensity to produce accurate 

classifications when given different sensitivity and 

specificity constraints. 

The best performance is ResNet-15, which excels in 

terms of F1-Score, AUC, recall, accuracy, and 

precision. With its consistent performance across a 

range of indicators, AlexNet is a trusted option for 

apps that monitor healthcare. Given its resource-

friendly design and efficiency-focused architecture, 

MobileNetV2 maintains competitive performance. The 

decision between these models should be made in 

accordance with the precise needs and limitations of 

the task of healthcare monitoring, including the 

available resources, acceptable levels of accuracy, and 

requirements for real-time processing. This analysis 

highlights the significance of carefully assessing 

models on testing data in order to make wise 

judgements when using them in actual healthcare 

scenarios. 

6. Conclusion 

This study's IoT-based health monitoring system is a 

significant development in the field of healthcare 

technology. Stages for data collection, preprocessing, 

and model selection are included in the system design. 

It efficiently gathers health-related data by utilising IoT 

technology, making it a useful tool for ongoing patient 

well-being monitoring. Ability to adapt to varied 

healthcare circumstances is made possible by the 

freedom to select from a variety of deep learning 

models. These models' performance evaluation 

produced important results. In terms of accuracy, 

precision, recall, F1-Score, specificity, and AUC, 

ResNet-15 emerged as a remarkable performer. It is a 

viable option for real-world healthcare applications 

because to its robustness in recognising health-related 

events. Despite having a slightly older design, AlexNet 

consistently outperformed its peers across a range of 

criteria, demonstrating its effectiveness. MobileNetV2, 

which was created with efficiency in mind, performed 

admirably, especially given its resource-friendly 

architecture. We also examined training times, 

recognising the trade-offs between computational 

efficiency and model complexity. ResNet-15 

demonstrated appropriate training times considering its 
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depth, highlighting its applicability. Due to its ease of 

use, AlexNet was able to train more quickly, making it 

a feasible alternative for quick model building. The 

effective architecture of MobileNetV2 was favourable 

for IoT devices with limited resources. Collectively, 

these results emphasise the significance of taking into 

account a system's particular needs, resources, and 

desired levels of accuracy when choosing an 

acceptable model. In the healthcare industry, it is 

crucial to be able to balance real-time processing 

requirements, resource usage, and performance. 

Finally, by providing precise and rapid health 

monitoring capabilities, the IoT-Based Health 

Monitoring System that combines ResNet-15, 

MobileNetV2, and AlexNet has enormous promise to 

revolutionise healthcare. Future work in this field may 

involve deploying in the real world, perfecting models, 

and enhancing the system's functionality to handle 

various healthcare concerns. 

References 

[1] V. B. Shalini, "Smart Health Care Monitoring 

System based on Internet of Things (IOT)," 2021 

International Conference on Artificial Intelligence 

and Smart Systems (ICAIS), Coimbatore, India, 

2021, pp. 1449-1453, doi: 

10.1109/ICAIS50930.2021.9396019. 

[2] P. Dineshkumar, R. SenthilKumar, K. Sujatha, R. 

S. Ponmagal and V. N. Rajavarman, "Big data 

analytics of IoT based Health care monitoring 

system," 2016 IEEE Uttar Pradesh Section 

International Conference on Electrical, Computer 

and Electronics Engineering (UPCON), Varanasi, 

India, 2016, pp. 55-60, doi: 

10.1109/UPCON.2016.7894624. 

[3] V. Tripathi and F. Shakeel, "Monitoring Health 

Care System Using Internet of Things - An 

Immaculate Pairing," 2017 International 

Conference on Next Generation Computing and 

Information Systems (ICNGCIS), Jammu, India, 

2017, pp. 153-158, doi: 

10.1109/ICNGCIS.2017.26. 

[4] G. A. R, Y. P. Singh and N. S. Narawade, 

"Design Of Fog Computing System For Health 

Care Applications Based On IoT," 2022 3rd 

International Conference for Emerging 

Technology (INCET), Belgaum, India, 2022, pp. 

1-4, doi: 10.1109/INCET54531.2022.9825347. 

[5] Rahmani et al., "Exploiting smart e-Health 

gateways at the edge of Health care Internet-of-

Things: A fog computing approach", Future 

Generation Computing System, vol. 078, pp. 

0641-0658, 2018. 

[6] Dastjerdi et al., "Fog computing: Helping the 

Internet of Things realize its potential", 

Computer, vol. 049, no. 08, pp. 0112-0116, 2016. 

[7] Mirjana Maksimović, "Implementation of Fog 

computing in IoT-based Health care system", Jita-

Journal Of Information Technology And 

Aplications, vol. 14, no. 2, 2017. 

[8] Hafedh Ben Hassen, Wael Dghais and Belgacem 

Hamdi, "An E-health system for monitoring 

elderly health based on Internet of Things and 

Fog computing", Health information science and 

systems, vol. 7, no. 1, pp. 1-9, 2019. 

[9] Sonia Singh, Ankita Bansal, Rajinder Sandhu and 

Jagpreet Sidhu, "Fog computing and IoT based 

Health care support service for dengue fever", 

International Journal of Pervasive Computing and 

Communications, 2018. 

[10] Mohammad Aazam, Sherali Zeadally and Khaled 

A. Harras, "Offloading in fog computing for IoT: 

Review enabling technologies and research 

opportunities", Future Generation Computer 

Systems, vol. 87, pp. 278-289, 2018. 

[11] Yingjuan Shi, Gejian Ding, Hui Wang, H. 

Eduardo Roman and Si Lu, "The fog computing 

service for Health care", 2015 2nd International 

Symposium on Future Information and 

Communication Technologies for Ubiquitous 

Health care (Ubi-HealthTech), pp. 1-5, 2015. 

[12] K. Agnihotri, P. Chilbule, S. Prashant, P. Jain and 

P. Khobragade, "Generating Image Description 

Using Machine Learning Algorithms," 2023 11th 

International Conference on Emerging Trends in 

Engineering & Technology - Signal and 

Information Processing (ICETET - SIP), Nagpur, 

India, 2023, pp. 1-6, doi: 10.1109/ICETET-

SIP58143.2023.10151472. 

[13] K. Perumal and M. Manohar, "A Survey on 

Internet of Things: Case Studies Applications and 

Future Directions", Internet of Things: Novel 

Advances and Envisioned Applications, pp. 281-

297, 2017. 

[14] S.M. Riazul Islam, Daehan Kwak, MD. Humaun 

Kabir, Mahmud Hossain and Kyung Sup Kwak, 

"The Internet of Things for Health Care: A 

Comprehensive Survey", IEEE, pp. 678-708, 

2015. 



 
 

158 

Research Journal of Computer Systems and Engineering (RJCSE)  

Volume 4 Issue 2 (2023) | Pages:  144 – 159 | e-ISSN:2230-8571; p-ISSN: 2230-8563 

https://doi.org/10.52710/rjcse.84 

 

https://technicaljournals.org 

[15] Ruhani Ab. Rahman, NurShima Abdul Aziz, 

Murizah Kassim and Mat IkramYusof, "IOT 

Based Personal Health Care Monitoring Device 

for Diabetic Patients", IEEE, 2017. 

[16] Yuehong YIN, Yan Zeng, Xing Chen and Yuanjie 

Fan, "The Internet of Things in Healthcare: An 

Overview", Journal of Industrial Information 

Integration, vol. 1, pp. 3-13, 2016. 

[17] Ullah Kaleem, Munam Ali Shah and Sijing Zhan, 

"Effective Ways to Use Internet of Things in the 

Field of Medical and Smart Health Care", 

International Conference on Intelligent Systems 

Engineering (ICISE), 2016. 

[18] Himadri Nath Saha, Supratim Auddy and Subrata 

Pal, "Health Monitoring using Internet of Things 

(IOT)", IEEE, pp. 69-73, 2017. 

[19] Shubham Banka, Isha Madan and S.S. Saranya, 

"Smart Healthcare Monitoring using IOT", 

International Journal of Applied Engineering 

Research, vol. 13, no. 15, pp. 1198411989, 2018. 

[20] D. Shiva Rama Krishnan, Subhash Chand Gupta 

and Tanupriya Choudhury, "An IOT Based 

Patient Health Monitoring System", IEEE, 2018. 

[21] P. Khobragade, P. Ghutke, V. P. Kalbande and N. 

Purohit, "Advancement in Internet of Things 

(IoT) Based Solar Collector for Thermal Energy 

Storage System Devices: A Review," 2022 2nd 

International Conference on Power Electronics & 

IoT Applications in Renewable Energy and its 

Control (PARC), Mathura, India, 2022, pp. 1-5, 

doi: 10.1109/PARC52418.2022.9726651. 

[22] J. M, C. P. L. G, R. S and T. K, "Internet of 

Things (IOT) based Patient health care 

Monitoring System using electronic gadget," 

2022 6th International Conference on Intelligent 

Computing and Control Systems (ICICCS), 

Madurai, India, 2022, pp. 487-490, doi: 

10.1109/ICICCS53718.2022.9788464. 

[23] C. Raj, C. Jain and W. Arif, "HEMAN: Health 

monitoring and nous: An IoT based e-health care 

system for remote telemedicine," 2017 

International Conference on Wireless 

Communications, Signal Processing and 

Networking (WiSPNET), Chennai, India, 2017, 

pp. 2115-2119, doi: 

10.1109/WiSPNET.2017.8300134. 

[24] P. Anirudh, G. A. E. S. Kumar, R. P. Vidyadhar, 

G. Pranav and B. A. Aumar, "Automatic Patient 

Monitoring and Alerting System based on IoT," 

2023 8th International Conference on 

Communication and Electronics Systems 

(ICCES), Coimbatore, India, 2023, pp. 328-331, 

doi: 10.1109/ICCES57224.2023.10192644. 

[25] Antonio Iyda Paganelli, Adriano Branco, Markus 

Endler, Pedro Elkind Velmovitsky, Pedro 

Miranda, Plinio Pelegrini Morita, et al., "IoT-

Based COVID-19 Health Monitoring System: 

Con text Early Warning and Self-Adaptation", 

2021 IEEE International Conference on Big Data 

(Big Data), pp. 5975-5977, 2021. 

[26] D. Shiva Rama Krishnan, Subhash Chand Gupta 

and Tanupriya Choudhury, "An IoT based Patient 

Health Monitoring System", 2018 In ternational 

Conference on Advances in Computing and 

Communication Engineering (ICACCE), pp. 01-

07, 2018. 

[27] B Sridhar, S Sridhar and V Nanchariah, "Design 

of novel wireless sensor network enabled IoT 

based smart health monitoring system for thicket 

of trees", 2020 Fourth International Conference 

on Computing Methodologies and 

Communication (ICCMC), pp. 872-875, 2020. 

[28] Arpita Das, Shimul Dey Katha, Muhammad 

Sheikh Sadi et al., "An IoT enabled health 

monitoring kit using non-invasive health 

parameters", 2021 International Conference on 

Automation Control and Mechatronics for 

Industry 4.0 (ACMI), pp. 1-6, 2021. 

[29] Mohammad Monirujjaman Khan, Safia Mehnaz, 

Antu Shaha, Mohammed Nayem, Sami Bourouis 

et al., "IoT-based smart health monitoring system 

for COVID-19 patients", Computational and 

Mathematical Methods in Medicine 2021, 2021. 

[30] Avelet Maria Fernandes, Anusha Pai and Louella 

M Mesquita Co laco, "Secure SDLC for IoT 

based health monitor", 2018 Second International 

Conference on Electronics Communication and 

Aerospace Technology (ICECA), pp. 1236-1241, 

2018. 

[31] Neel Kamal and Prasun Ghosal, "Three tier 

architecture for iot driven health monitoring 

system using raspberry pi", 2018 IEEE 

International Symposium on Smart Electronic 

Systems (iSES)(Formerly iNiS), pp. 167-170, 

2018. 

[32] Neha Moreshwar Mendhe, D Sharmila and SM 

Ramesh, "Artificial Intelligence-based Web-

Centric E-health Monitoring System", 2022 

International Conference on Innovative 

Computing Intelligent Communi cation and 



 
 

159 

Research Journal of Computer Systems and Engineering (RJCSE)  

Volume 4 Issue 2 (2023) | Pages:  144 – 159 | e-ISSN:2230-8571; p-ISSN: 2230-8563 

https://doi.org/10.52710/rjcse.84 

 

https://technicaljournals.org 

Smart Electrical Systems (ICSES), pp. 1-5.62, 

2022. 

[33]  IoT healthcare dataset: https://ieee-

dataport.org/documents/iot-healthcare-security-

dataset 

 

 

 


