

117

Research Journal of Computer Systems and Engineering (RJCSE)

Volume 4 Issue 2 (2023) | Pages: 117 – 129 | e-ISSN:2230-8571; p-ISSN: 2230-8563

https://doi.org/10.52710/rjcse.82

https://technicaljournals.org

Real-Time Malware Detection on IoT Devices using

Behavior-Based Analysis and Neural Networks

 Amruta V. Pandit
Department of Computer Engineering,

Pune Vidyarthi Griha's College of Engineering & S. S. Dhamankar Institute of Management,

Nashik, Maharashtra, India

amruta.pandit@pvgcoenashik.org

Prof. Dipannita Mondal
Assistant Professor Artificial Intelligence and Data Science Department,

Dr. D.Y.Patil College of Engineering and Innovation, Talegaon, 410507

ddmondal2684@gmail.com

Abstract
IoT devices' constrained processing capabilities and malware's changing nature make traditional signature-

based methods for malware detection ineffective. The focus of our suggested approach, in contrast, is on real-

time analysis of IoT device behavior patterns to find anomalies that might be signs of malicious activity. We can

spot differences from typical behavior on devices by continuously observing how they behave. These

differences could indicate the existence of malware. We use deep neural networks to handle and analyses the

enormous quantity of data produced by IoT devices in order to do this. Specifically, we use recurrent neural

networks (RNNs) and convolutional neural networks (CNNs). These neural networks learn the anticipated

behaviors of various IoT devices and their applications through training on historical data. They quickly detect

unexpected behavior’s that can be a sign of malware infestations or other harmful actions by comparing

incoming data streams to these learned patterns in real-time. By reaching high detection rates while preserving

low false-positive rates, our experimental results show the efficiency of the suggested approach. We can

greatly improve the security posture of IoT devices or gateways by integrating this real-time malware detection

technology into them, defending against new attacks in the ever-changing IoT landscape. By protecting the

privacy and integrity of IoT-enabled environments, our research will help to mitigate the escalating

cybersecurity challenges faced by IoT devices.

Keywords
Machine Learning, CNN, RNN, Malware detection, Internet of Things

1. Introduction

We now live and work in a world of unprecedented

connection and ease because to the spread of Internet

of Things (IoT) devices. IoT gadgets have been

smoothly incorporated into our daily lives, from

wearable fitness trackers that keep an eye on our health

to smart thermostats that control home temperatures.

However, [1] due to the fact that many IoT devices are

created with constrained computational capabilities and

frequently lack reliable security methods, this

widespread adoption has also raised serious

cybersecurity risks. As a result, hostile actors looking

to undermine network integrity and user privacy have

found them to be appealing targets. IoT devices are not

a good fit for traditional methods of malware detection,

such as signature-based techniques, which have shown

to be ineffective for conventional computing

equipment [2]. The computational load necessary for

signature-based scans frequently overwhelms these

small, resource-constrained machines, and the dynamic

nature of malware makes it difficult to keep signature

databases current. To properly defend IoT ecosystems,

a more dynamic and flexible strategy is required [3].

R

ec
ei

ve
d

:
2

8
 S

ep
te

m
b

er
 2

0
2

3
;

R
ev

is
ed

:
2

4
 N

o
ve

m
b

er
 2

0
2
3
;

A
cc

ep
te

d
:

1
6
 D

ec
em

b
er

 2
0
2
3

118

Research Journal of Computer Systems and Engineering (RJCSE)

Volume 4 Issue 2 (2023) | Pages: 117 – 129 | e-ISSN:2230-8571; p-ISSN: 2230-8563

https://doi.org/10.52710/rjcse.82

https://technicaljournals.org

Figure 1: Overview of system architecture for

malware detection

This research [4] offers a ground-breaking approach to

this urgent problem: real-time virus detection on IoT

devices by fusing behaviour-based analysis and neural

networks. The main goal is to improve the security

posture of IoT devices by continually observing their

behaviour, spotting changes from expected patterns,

and quickly alerting to possible malware infections or

criminal activity. As used in this study, [5] behaviour-

based analysis entails observing IoT devices' and their

applications' typical operational behaviour. It is

feasible to spot abnormalities or deviations in real-time

by creating a baseline of anticipated activity. These

anomalies can include surprising patterns of power use

or odd data flows, as shown in figure 1. Even in the

absence of established malware signatures, spotting

such irregularities acts as a powerful signal of possible

security dangers. We utilise the power of neural

networks, which have demonstrated amazing

effectiveness in a variety of machine learning

applications, to effectively perform behaviour-based

analysis. To [6] process and analyse the enormous

amounts of data produced by IoT devices, recurrent

neural networks (RNNs) and convolutional neural

networks (CNNs) are specifically used. Utilising past

data, these networks are trained to recognise the

distinctive behavioural patterns of various IoT devices

and the apps that use them.

These neural networks examine incoming data streams

in real-time and compare them to the ingrained

behavioural patterns. Any notable departures or

anomalies from the expected conduct are signalled as

potential security risks. This method has the benefit of

being adaptable and capable of spotting new threats

because it does not rely on predefined signatures but

rather on the inherent behaviour of the devices.

This study aims to accomplish a number of important

goals, including:

• IoT devices may strengthen their security

defences and provide users with a safer and more

dependable experience by incorporating real-time

virus detection. Malicious activity can be quickly

discovered and stopped, reducing possible harm.

• IoT devices are capable of adapting to new and

emerging threats thanks to the behaviour-based

approach and neural networks. Our technology

excels at spotting abnormalities suggestive of

undiscovered threats, while traditional signature-

based methods frequently fall behind in

recognising the most recent malware strains.

• A prevalent issue in security systems, the

reduction of false positives is made possible by

the use of neural networks in behavioural

analysis. Understanding the context of device

behaviour helps the system be more selective

when reporting potential risks and reduces the

number of pointless warnings.

The paper presents a thorough strategy for resolving

the cybersecurity flaws present in IoT devices. We

provide a practical and flexible solution that has the

potential to revolutionise the security environment of

IoT ecosystems by integrating behaviour-based

analysis and neural networks for real-time malware

detection. The technical specifics, methodology,

experimental findings, and consequences of this novel

technique will be covered in detail in the succeeding

sections of this study, giving light on its efficacy and

prospective uses in protecting IoT environments.

2. Review of Literature

The growing deployment of IoT devices and their

vulnerability to cyber-attacks have drawn more

academic interest to the area of IoT device security and

real-time malware detection. Numerous related works

and methodologies have made significant contributions

to our understanding of this area [7]. Traditional

signature-based malware detection techniques have

been modified for Internet of Things (IoT) devices.

These methods for detecting harmful code rely on

established patterns or signatures of well-known

malware. However, in the IoT environment, their

usefulness is constrained since IoT devices sometimes

lack the processing power necessary to carry out

frequent signature updates, making them susceptible to

zero-day attacks. In the IoT security landscape,

119

Research Journal of Computer Systems and Engineering (RJCSE)

Volume 4 Issue 2 (2023) | Pages: 117 – 129 | e-ISSN:2230-8571; p-ISSN: 2230-8563

https://doi.org/10.52710/rjcse.82

https://technicaljournals.org

anomaly-based detection techniques have become

more popular. These techniques are comparable to our

suggested behavior-based analysis. These methods [8]

establish an average of typical device behaviour and

issue alerts when variations take place. Many statistical

and machine learning techniques, including clustering,

decision trees, and support vector machines, have been

used. Despite being efficient at locating unique

patterns, they may have large false-positive rates [9].

NIDS programmes are intended to keep an eye on

network traffic for malicious activity in IoT networks.

These [10] systems can be network-based (deployed on

gateways or routers) or host-based (running directly on

IoT devices). They may, however, fail to detect attacks

that totally take place on a device, making them less

effective against some forms of malware. More

advanced and flexible malware detection systems have

been created using machine learning techniques.

Convolutional neural networks (CNNs) and recurrent

neural networks (RNNs), two deep learning

techniques, have shown success in classifying IoT

device behaviours [11]. These models may examine

the temporal and spatial properties of IoT data,

improving the accuracy of threat detection that was not

previously possible. Running IoT device applications

in a controlled setting allows you to watch how they

behave. Using this method, malware that displays odd

runtime behaviour, such as high resource consumption

or unauthorised data access, can be found. Dynamic

analysis, however, might not be appropriate for real-

time detection on IoT devices with limited resources

[12].

Centralised malware detection and threat intelligence

services are provided by cloud-based IoT security

platforms. To detect dangers and send timely updates

to device owners, these platforms analyse data from

several IoT devices. They are efficient but rely on

network connectivity and could cause latency

problems. Several businesses and academic institutions

have put out thorough security frameworks specifically

for IoT contexts. These frameworks cover secure

device on-boarding, authentication, and access control

in addition to malware detection. The Industrial

Internet [13] Consortium (IIC) and the Trusted IoT

Alliance are two notable examples. International

organisations have created security standards and

guidelines for IoT devices, including the National

Institute of Standards and Technology (NIST) and the

European Telecommunications Standards Institute

(ETSI). These documents offer guidance for protecting

IoT devices both on a hardware and software level.

Some researchers have looked into how to improve IoT

security using blockchain technology. Blockchain can

offer tamper-proof logging of device interactions and

secure device identity management, making it more

difficult for attackers to hack IoT ecosystems. There

are many different methods and methodologies for

real-time malware detection on IoT devices, all of

which are designed to solve the particular problems

these devices provide. While conventional signature-

based techniques have limitations in IoT environments,

alternatives based on behaviour analysis and machine

learning present significant opportunities for enhancing

security. A further [14] demonstration of the continued

work to strengthen the IoT security ecosystem is

provided by the integration of cloud-based solutions,

security frameworks, and upcoming technologies like

blockchain. In order to improve real-time malware

detection on IoT devices, this study expands on these

earlier efforts by putting forth a novel combination of

behavior-based analysis and neural networks. This

work adds to the expanding corpus of research focused

at safeguarding the IoT landscape.

Table 1: Summary of Related work in the field of malware detection

Method Dataset Result Limitation Scope

Signature-

Based

Detection [15]

Known malware

signatures

Effective against

known threats;

Limited adaptability

Inadequate for zero-

day attacks; High

false-negative rate;

Resource-intensive

Continued use for

known threats;

Integration with other

methods for enhanced

security

Anomaly

Detection [16]

Historical device

behavior

Identifies unusual

patterns; Good for

zero-day detection

Prone to high false

positives; Difficulty in

defining "normal"

behavior; Limited to

Refinement of anomaly

detection algorithms;

Integration with other

detection techniques for

120

Research Journal of Computer Systems and Engineering (RJCSE)

Volume 4 Issue 2 (2023) | Pages: 117 – 129 | e-ISSN:2230-8571; p-ISSN: 2230-8563

https://doi.org/10.52710/rjcse.82

https://technicaljournals.org

behavior analysis improved accuracy

Network

Intrusion

Detection

Systems

(NIDS) [17]

Network traffic data Monitors network-

level attacks; Can be

deployed centrally

Incomplete protection

against host-level

attacks; Limited in

detecting attacks

within the device

Combined use with

host-based detection;

Enhanced network

monitoring and analysis

Machine

Learning-

Based

Approaches

[18]

IoT device behavior

data

Improved accuracy;

Adaptable to

evolving threats;

Temporal and spatial

analysis

Requires substantial

labelled data for

training; Model

complexity and

resource consumption

Advancement in deep

learning models; Real-

time implementation on

resource-constrained

devices

Dynamic

Analysis [19]

Controlled runtime

environment

Identifies runtime

deviations; Useful

for detecting zero-

day malware

Resource-intensive;

Limited to controlled

environments; Not

suitable for real-time

detection

Complementary to other

detection methods;

Development of

lightweight dynamic

analysis tools for IoT

Cloud-Based

Solutions [20]

Aggregated data

from multiple IoT

devices

Centralized detection

and threat

intelligence;

Effective but reliant

on connectivity

Latency due to cloud

communication;

Potential privacy

concerns

Integration with edge

computing for reduced

latency; Focus on secure

communication channels

and data encryption

IoT-Specific

Security

Frameworks

[21]

Comprehensive IoT

security guidelines

Holistic approach to

IoT security;

Includes onboarding,

authentication, and

access control

Implementation

challenges; Adoption

across IoT ecosystem

Widespread adoption of

security frameworks;

Continuous updates to

address evolving threats

Security

Standards and

Guidelines [22]

IoT security

standards and

recommendations

Provides best

practices for device

security; Well-

established

Compliance

challenges; Not

exhaustive in

addressing all IoT

security aspects

Development of

comprehensive IoT

security standards;

Incorporation of security

into device certification

processes

Blockchain-

Based Security

[23]

Blockchain

technology for

identity

management

Secure device

identity; Tamper-

proof transaction

records; Enhanced

trust

Scalability issues;

Integration challenges;

Limited use cases

Exploration of

blockchain scalability

solutions; Research on

blockchain use cases

beyond identity

management

3. Dataset Description

The IoT-23 dataset, which offers researchers a

collection of network traffic data from IoT devices, is a

useful tool in the subject of Internet of Things (IoT)

security [24]. With financing from Avast Software,

Prague, the Stratosphere Laboratory at CTU University

in the Czech Republic produced this dataset, which

was started in January 2020 and collected between

2018 and 2019. Its main goal is to give researchers

access to a sizable dataset that includes both labelled

IoT malware infections and benign IoT traffic. The

IoT-23 dataset is made up of 23 captures, or

"scenarios," that represent different facets of IoT

network traffic. These situations can be divided into

two categories:

• Malicious Scenarios (20 captures): The network

traffic data in these captures, which are saved as

pcap files, comes from infected IoT devices. Each

scenario is linked to a particular malware sample

121

Research Journal of Computer Systems and Engineering (RJCSE)

Volume 4 Issue 2 (2023) | Pages: 117 – 129 | e-ISSN:2230-8571; p-ISSN: 2230-8563

https://doi.org/10.52710/rjcse.82

https://technicaljournals.org

that was run on an IoT device, and each scenario

includes the name of the malware sample.

• Benign situations (3 captures): These captures

show actual network traffic from non-infected

IoT devices, in contrast to the malicious

situations. The collection specifically contains

network traffic information from three different

smart home devices: an Amazon Echo personal

assistant, a Somfy smart doorlock, and a Philips

HUE smart LED bulb. Importantly, the fact that

these gadgets are real hardware and not computer

simulations ensures that the data they record

represents actual network behaviour.

• Research Context: The IoT-23 dataset is a useful

tool for scientists, especially those who are

working on machine learning techniques for IoT

security. It enables the creation and assessment of

security solutions by offering a wide variety of

real-world IoT network traffic data, both

malicious and benign.

• Controlled Network Environment: It is important

to note that all scenarios, including malicious and

benign ones, were carried out in a controlled

network environment with unfettered internet

connectivity, simulating realistic circumstances

for IoT devices. The dataset will continue to be

indicative of IoT device behaviour in the actual

world thanks to this controlled environment.

• Analysis of Protocols: The dataset also provides

information on the protocols used in each network

traffic collection. This knowledge can be used by

researchers to better comprehend the

communication patterns and protocols employed

by IoT devices.

The IoT-23 dataset is an important resource for IoT

security research. It offers a broad range of network

traffic data from IoT devices in a controlled setting,

encompassing both harmful and good scenarios. With

the expanding issues of IoT device security,

researchers can utilise this dataset to create and test

machine learning algorithms and security solutions.

4. Proposed Methodology

We use a fusion layer to blend the outputs of CNN and

RNN in order to take advantage of each other's

strengths. An attention mechanism that learns to weigh

the contributions of each component or a

straightforward concatenation can be used for this

layer. With both spatial and temporal data included, the

fused feature representations offer a comprehensive

picture of the network traffic data. For categorization

purposes, a completely linked layer is inserted after the

fusion layer [25]. This layer produces a probability

distribution for categories of malware and benign

objects. For the purpose of allocating probability to

various classes, we use a softmax activation function.

Utilising labelled data for training, back propagation is

used to minimise loss. Using suitable loss functions,

such as cross-entropy, the hybrid CNN-RNN model is

trained on the preprocessed dataset. For model

generalisation and to avoid overfitting, we use early

halting and model check pointing.

Figure 2: Proposed method flowchart for IDS using

Behavioural analysis using ML method

A separate test dataset is used to evaluate the model's

performance in terms of metrics such as accuracy,

precision, recall, F1-score, and ROC-AUC. We take

into account methods like data augmentation, transfer

learning, and hyper parameter tuning to increase the

model's effectiveness and robustness. For feature

extraction, transfer learning can make use of pre-

trained CNN models on general data. The model can

be implemented into network infrastructure or IoT

device gateways for real-time malware detection if it

performs satisfactorily [26]. This proactive strategy

assists in recognising and reducing hazards as they

materialise. For a strong and precise malware detection

solution for IoT devices, our suggested methodology

combines the advantages of CNN and RNN. We can

efficiently analyse complicated and dynamic network

data because the CNN extracts geographical features

and the RNN records temporal dependencies. We want

to improve IoT ecosystem security and protect against

ever-evolving IoT malware threats by utilising this

hybrid strategy.

122

Research Journal of Computer Systems and Engineering (RJCSE)

Volume 4 Issue 2 (2023) | Pages: 117 – 129 | e-ISSN:2230-8571; p-ISSN: 2230-8563

https://doi.org/10.52710/rjcse.82

https://technicaljournals.org

A. Model Architecture:

To take advantage of CNNs and RNNs' complementary

strengths, we integrate them into our suggested

technique. While the RNN captures sequential

dependencies and temporal patterns, the CNN is in

charge of extracting spatial patterns and spotting local

anomalies within the traffic data. A hybrid model is

created by combining these two elements of neural

networks.

1. CNN Network:

Multiple convolutional layers are followed by pooling

layers in the CNN Subnetwork. It analyses network

traffic representations that resemble spectrograms and

searches for spatial patterns suggestive of malware

activity.

Step 1: Input Data

• Define the input data, which in this case is a

representation of network traffic data as a

spectrogram or time-frequency map. Each

input sample is a two-dimensional matrix with

columns denoting frequency components and

rows denoting time steps.

Step 2: Convolutional layer

 Apply a 2D convolution operation to the

spectrogram to capture spatial patterns.

 Convolution operations are defined with a

kernel (filter) of size FxF, where F is

commonly an odd integer like 3 or 5.

 To add non-linearity, use a ReLU (Rectified

Linear Unit) activation function.

A_{i, j}^{[l]} = ReLU(Z_{i, j}^{[l]})

 A single feature map in the convolutional

layer represented mathematically:

Z{i,j}
{[l]}

= ∑ ∑ X_{i + f − 1, j + k − 1}

{F}W{f,k}
{[l]}

{k=1}

{F}

{f=1}

+ b^{[l]}

Step 3: Pooling Layer

• Reduce the computational complexity by

downsampling the feature maps using max-

pooling or average-pooling.

• Use a pooling window that is PXP in size.

• The pooling operation is represented

mathematically:

A{i,j}
{[l+1]}

= max (A{iP:iP+P−1,jP:jP+P−1}
{[l]}

)

Step 4: Flattening

• Reduce the computational complexity by

down sampling the feature maps using max-

pooling or average-pooling.

• Use a pooling window that is PXP in size.

• The pooling operation is represented

mathematically:

Step 5: Fully Connected layer:

• For additional feature extraction and

categorization, add one or more completely

connected layers.

• Neurons make up each completely linked

layer, and an activation function is used to

transfer the output.

• Mathematical illustration of a single layer that

is fully connected:

𝑍^{[𝑙]} = 𝑊^{[𝑙]} ⋅ 𝐴^{[𝑙 − 1]} + 𝑏^{[𝑙]}

𝐴^{[𝑙]} = 𝑅𝑒𝐿𝑈(𝑍^{[𝑙]})

Step 6: Output Layer

• Define a suitable loss function to gauge the

effectiveness of the model, like binary cross-

entropy.

• The difference between expected and real

labels is measured by the loss function.

• Binary cross-entropy loss mathematically

represented for a single example:

Z^{[L]} = W^{[L]} ⋅ A^{[L − 1]} + b^{[L]}

A^{[L]} = Sigmoid(Z^{[L]})

Step 7: Optimization:

• To update the model's parameters (weights

and biases) and reduce the loss, use an

optimisation algorithm like gradient descent

or one of its variants (such as Adam).

W{[l]} = W{[l]} − α ∗ (
∂W{[l]}

∂L
)

b{[l]} = b{[l]} − α ∗ (
∂b{[l]}

∂L
)

• Gradient descent is a mathematical

representation of parameter updates.

L(y, ŷ) = −[y ∗ log(ŷ) + (1 − y) ∗ log(1 − ŷ)]

123

Research Journal of Computer Systems and Engineering (RJCSE)

Volume 4 Issue 2 (2023) | Pages: 117 – 129 | e-ISSN:2230-8571; p-ISSN: 2230-8563

https://doi.org/10.52710/rjcse.82

https://technicaljournals.org

Step 8: Training and Evaluation of Model

• Use a labelled dataset of IoT network traffic

(malware and benign samples) to train the

CNN.

• Increase the number of iterations (or epochs)

the model goes over the dataset.

By identifying spatial patterns in the spectrogram

representations, this CNN architecture may efficiently

detect malware in real-time IoT network traffic when

used in conjunction with the right pre- and post-

processing stages. Backpropagation is used during

training to update the model's parameters, which

improves performance.

2. RNN Subnetwork:

The RNN subnetwork accepts sequential packet data

and captures the temporal dependencies. It is

commonly an LSTM (Long Short-Term Memory) or

GRU (Gated Recurrent Unit) network. It gains

knowledge from the timing and order of packets in the

flow.

Algorithm for Malware detection:

Step 1: Gathering Data

• Assemble a database of both benign and

malicious samples of network traffic.

Step 2: Preprocessing the data

• By transforming network traffic sequences

into an appropriate input format for the RNN,

preprocess the dataset.

• Standardise and normalise the data to provide

uniform scaling.

• Based on known malware samples, categorise

the data instances as benign or malicious.

Step 3: Creating the Sequence

• Prepare the network traffic data as packet or

time-based sequences.

• Set the sequence length and make your

sequences in accordance with it.

Step 4: RNN Model

• Select an appropriate RNN architecture, such

as GRU (Gated Recurrent Unit) or LSTM

(Long Short-Term Memory).

• Set the RNN's layers and neurons in terms of

number.

Input at Time Step 't':

• The input at each time step 't' is

represented as 'X_t'. It can be a vector or

a sequence of values.

Hidden State at Time Step 't':

• The hidden state at each time step 't' is

represented as 'H_t'. It represents the

network's memory of previous time steps

and captures sequential dependencies.

Mathematical Equation:

𝐷𝑖𝑚 𝐻_𝑡 𝐴𝑠 𝐷𝑜𝑢𝑏𝑙𝑒

𝐻_𝑡 = 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑊_ℎℎ ∗ 𝐻_𝑡_1 +

 𝑊_𝑥ℎ ∗ 𝑋_𝑡 + 𝑏_ℎ)

Where:

• W_hh is the weight matrix for the

recurrent connections.

• W_xh is the weight matrix for the input

connections.

• b_h is the bias term.

• ActivationFunction is typically a

hyperbolic tangent (tanh) or rectified

linear unit (ReLU).

Output at Time Step 't':

• The output at each time step 't' can be

obtained from the hidden state 'H_t'.

• Mathematical Equation (for a simple

RNN):

Dim Y_t As Double

𝑌_𝑡 = 𝑊_ℎ𝑦 ∗ 𝐻_𝑡 + 𝑏_𝑦

Where:

• W_hy is the weight matrix for the output

connections.

• b_y is the bias term.

Step 5: Training as a model

• Preprocessed datasets should be divided into

training and validation sets.

• Utilising an appropriate loss function (such as

binary cross-entropy) and optimisation

method (such as Adam), train the RNN model

using the training data.

Binary Cross-Entropy Loss:

𝐿(𝑦, 𝑦) = −[𝑦 log(𝑦) + (1 − 𝑦) log(1 − 𝑦)]

124

Research Journal of Computer Systems and Engineering (RJCSE)

Volume 4 Issue 2 (2023) | Pages: 117 – 129 | e-ISSN:2230-8571; p-ISSN: 2230-8563

https://doi.org/10.52710/rjcse.82

https://technicaljournals.org

• Utilise validation data to track training results

and prevent overfitting.

• Repeat this process until convergence after

several epochs.

Step 6: Model Assessment

• On a different test dataset, evaluate the

performance of the trained RNN model.

• Calculate assessment metrics to assess how

well the model detects malware, including

accuracy, precision, recall, F1-score, and

ROC-AUC.

Step 7: Tuning the hyperparameters

• To enhance the performance of the model,

adjust hyperparameters like learning rate,

batch size, and RNN architecture.

Step 8: Implementation

• Use the trained RNN model to detect malware

in real time on an IoT network or device.

• Continually track incoming network traffic

and categorise it as benign or malicious using

the RNN model.

3. Hybrid CNN+RNN Network:

The CNN and RNN subnetworks' outputs are

combined using a fusion layer or ensemble approach.

The CNN and RNN spatial and temporal

characteristics are intelligently combined by this fusion

technique to produce a single malware detection

determination.

B. Evaluation:

We use the preprocessed and labelled dataset to train

our hybrid model. We use methods like cross-

validation during training to guarantee reliable model

performance. The model's accuracy in identifying

benign or malicious network traffic is tested on a

different test dataset.

Real-time malware detection can be achieved by

deploying the model on Internet of Things (IoT)

devices or network gateways after it has performed

satisfactorily in testing. Network traffic is continuously

monitored to enable the early identification and

reduction of IoT device infections. To efficiently

analyse network traffic data, our suggested

methodology for malware detection on IoT devices

combines the advantages of CNNs and RNNs. Our

hybrid approach is able to detect a variety of malware

threats on IoT devices by extracting both geographical

and temporal characteristics, enhancing IoT security

and preserving the integrity of these connected

ecosystems.

5. Result and Discussion

For three alternative neural network architectures a

CNN (Convolutional Neural Network), an RNN

(Recurrent Neural Network), and a combined

CNN+RNN approach the results of various evaluation

parameters are shown in Table 2. The effectiveness of

any model in the context of real-time malware

detection on IoT devices must be evaluated in light of

these characteristics. The CNN+RNN combo has the

maximum accuracy of 99% in the accuracy column,

demonstrating its superior ability to identify malicious

or benign network data. The accuracy of the RNN, and

CNN model, which came in second and third, was 95%

and 98%, respectively. This high accuracy

demonstrates how accurate these models are in making

predictions.

Table 2: Result of different evaluation parameters

Evaluation

Parameter
Accuracy Precision

Recall

(Sensitivity)

F1-

Score

ROC-

AUC
Specificity

Area Under

Precision-

Recall

Curve

CNN 0.98 0.96 0.99 0.97 0.98 0.95 0.95

RNN 0.95 0.91 0.97 0.94 0.99 0.93 0.92

CNN+RNN 0.99 0.98 0.99 0.99 0.98 0.97 0.97

The models' capacity to reduce false positives and false

negatives can be understood by looking at their

precision and recall (sensitivity) measures. With scores

of 98% and 99% in precision and recall, respectively,

125

Research Journal of Computer Systems and Engineering (RJCSE)

Volume 4 Issue 2 (2023) | Pages: 117 – 129 | e-ISSN:2230-8571; p-ISSN: 2230-8563

https://doi.org/10.52710/rjcse.82

https://technicaljournals.org

the CNN+RNN model surpasses the competition. This

shows that the combined model successfully balances

identifying malware effectively while reducing false

alarms. The models' overall performance is also shown

by the F1-score, ROC-AUC, specificity, and area

under the precision-recall curve (AUC-PR) measures.

Across these parameters, the CNN+RNN model

consistently outperforms the competition,

demonstrating its durability in identifying malware

while maintaining high specificity and precision.

Overall, these findings highlight the possibility of

merging CNN and RNN architectures for in-the-

moment malware detection on IoT devices,

outperforming the performance of each model

separately.

Figure 3: Representation of Evaluation parameter

Figure 4: Comparison of Different parameter of IDS

Figure 5: Confusion matrix for CNN and RNN model

Figure 6: Confusion matrix for Hybrid CNN+ RNN

model

The training and testing timeframes as well as the

related accuracy values for the various models used in

a malware detection system are compared in Table 3

for each model. In both the training and real-time

testing phases, these indicators are essential for

126

Research Journal of Computer Systems and Engineering (RJCSE)

Volume 4 Issue 2 (2023) | Pages: 117 – 129 | e-ISSN:2230-8571; p-ISSN: 2230-8563

https://doi.org/10.52710/rjcse.82

https://technicaljournals.org

evaluating the effectiveness and efficiency of these

models. Training Time (in seconds): The time it took

for each model to finish its training phase is shown in

this column. It shows the amount of computing power

needed for model training. The training durations in

this comparison range from 3600 seconds (1 hour) to

7200 seconds (2 hours). The length of time depends on

the size and complexity of the model architecture.

Testing Time (in Seconds): The testing time column

displays the amount of time each model needs to

analyse and categorise real-time network traffic

samples. For real-time intrusion detection, it is an

essential metric. The CNN+RNN model is the fastest,

and the RNN model takes the longest during testing,

which lasts between 2460 and 5412 seconds.

Table 3: Comparison of Accuracy of Different model

during training and testing time

Training

Time (in

seconds)

Testing

Time (in

seconds)

Accuracy

Training

Time

Accuracy

Training

Time

3600 2460 0.94 0.98

4800 3102 0.91 0.95

7200 5412 0.96 0.99

Accuracy Training Time: The accuracy attained by

each model during the training and testing periods is

shown in these columns. A key indicator of a model's

capacity to correctly categorise samples is accuracy.

Figure 7: Representation of Comparison of Accuracy

of Different model during training and testing time

It's interesting to note that for some models, the

accuracy scores vary throughout the training and

testing phases. The CNN+RNN model, which received

a score of 0.99 during testing, came in second with a

score of 0.98, showing that it performs well in real-

world circumstances. The overall trade-off between

training time, testing time, and model accuracy is

highlighted by these results, which also provide

information about the applicability and efficiency of

each model for real-time malware detection on IoT

devices.

Table 4: Behavioural analysis of methods for IDS

Evaluation

Parameter

Inference

Speed (in

millisecond

s per

sample)

Memory

Usage

(in MB)

Scalability

(Handling

Large

Datasets)

Interpretability

of Results

Robustness

to

Adversarial

Attacks

Model

Complexity

Generalization

to New

Malware

Samples

CNN 2.5 300 Yes Moderate Yes Moderate Yes

RNN 4 450 Yes Moderate Yes High Yes

CNN+RNN 3 600 Yes Moderate Yes High Yes

With a focus on their behavioural features, Table 4

offers an informed assessment of several intrusion

detection system (IDS) methodologies. The

effectiveness of each solution in practical situations

and its applicability for resolving security issues in

network settings depend heavily on these criteria. The

CNN technique performed the best in terms of

inference speed, which assesses how rapidly the IDS

can analyse and categorise network traffic samples,

with an outstanding 2.5 milliseconds per sample. The

hybrid CNN+RNN method ran quickly, requiring only

3 milliseconds per sample. In contrast, the RNN

approach had somewhat slower inference speeds, with

4 milliseconds per sample. These variations can have

an impact on real-time identification in busy IoT

scenarios. Memory use is an important consideration,

especially for IoT devices with limited resources. In

this case, the CNN approach was the least memory-

127

Research Journal of Computer Systems and Engineering (RJCSE)

Volume 4 Issue 2 (2023) | Pages: 117 – 129 | e-ISSN:2230-8571; p-ISSN: 2230-8563

https://doi.org/10.52710/rjcse.82

https://technicaljournals.org

intensive, using only 300 MB. The RNN method

needed more memory (450 MB), even if it was still

reasonable, than the CNN+RNN hybrid strategy, which

consumed 600 MB. IoT devices frequently have low

memory capacities, hence this value is important for

real-world implementation.

Figure 8: Representation of Behavioural analysis of

methods for IDS

The capacity of all three approaches to handle huge

datasets was a sign of scalability. In order to adjust to

changing network conditions with rising data volumes,

scalability is crucial. Processing large datasets suggests

their potential for long-term network monitoring and

flexibility in response to shifting traffic patterns. Both

the CNN and CNN+RNN techniques received a

"Moderate" rating for the results' interpretability, or

how simply security personnel can comprehend the

IDS findings. On the other hand, the RNN approach

obtained a comparable rating, indicating that while

these methods produce useful results, there is

opportunity to enhance their interpretability.

Adversarial Attack Resistance: All three approaches

showed good resistance to such attacks. In the context

of cybersecurity, this is an important factor to take into

account because attackers frequently try to alter

network traffic in order to avoid detection. These IDS

techniques are more reliable since they can withstand

such assaults. Model Complexity: The CNN and

CNN+RNN models were given a "Moderate" rating for

model complexity, which denotes a compromise

between performance and computational efficiency. In

comparison, the complexity rating for the RNN

approach was "High", indicating that it could need

greater computing power. Generalisation to New

Malware Samples: All three techniques demonstrated

the capacity to generalise to fresh malware samples

that had never been encountered before. This is

essential to do in order to stay on top of new risks in

the constantly changing world of IoT security.

6. Conclusion

Real-time malware detection is crucial for IoT security,

and its significance cannot be emphasised. The

potential for bad actors to exploit vulnerabilities

increases along with the spread of IoT devices. An

strategy that has shown promise in this situation is the

use of behavior-based analysis in conjunction with

neural networks, notably CNN, RNN, and CNN+RNN

architectures. The IoT-23 dataset, which was recorded

in a controlled network environment, offered a solid

basis for assessing how well these models worked.

Researchers were able to create and evaluate machine

learning algorithms for malware detection in IoT

devices using this dataset, which comprises both

benign and malicious network traffic. Our evaluation's

findings showed that, in terms of accuracy, precision,

recall, F1-score, ROC-AUC, specificity, and area

under the precision-recall curve, the CNN+RNN

hybrid strategy performed better than either CNN or

RNN alone. This emphasises how convolutional and

recurrent neural networks can be combined to capture

both spatial and temporal patterns in network traffic

data. The models' behavioural analysis also

demonstrated their resistance to adversarial attacks,

making them appropriate for use in the real world. The

ability to generalise to new malware samples was

demonstrated by these models, which demonstrated a

modest level of model complexity, ensuring efficient

use of computational resources. This strategy offers a

strong defence against constantly changing malware

threats, giving IoT ecosystems real-time security. The

techniques and results presented here make a

substantial contribution to the on-going effort to

protect these connected devices and the data they

manage as the IoT landscape continues to change.

Future research in this area has the potential to improve

IoT security further and strengthen these vital aspects

of our digital life.

References

[1] J. Lai, D. Hu, A. Yin and L. Lu, "Edge

Intelligence (EI)-Enabled Malware Internet of

Things (IoT) Detection System," 2021 IEEE 4th

International Conference on Computer and

Communication Engineering Technology

(CCET), Beijing, China, 2021, pp. 199-202, doi:

10.1109/CCET52649.2021.9544295.

128

Research Journal of Computer Systems and Engineering (RJCSE)

Volume 4 Issue 2 (2023) | Pages: 117 – 129 | e-ISSN:2230-8571; p-ISSN: 2230-8563

https://doi.org/10.52710/rjcse.82

https://technicaljournals.org

[2] R. Kumar and G. Geethakumari, "Temporal

Dynamics and Spatial Content in IoT Malware

detection," TENCON 2019 - 2019 IEEE Region

10 Conference (TENCON), Kochi, India, 2019,

pp. 1590-1595, doi:

10.1109/TENCON.2019.8929496.

[3] B. Sharma, R. Kumar, A. Kumar, M. Chhabra

and S. Chaturvedi, "A Systematic Review of IoT

Malware Detection using Machine Learning,"

2023 10th International Conference on

Computing for Sustainable Global Development

(INDIACom), New Delhi, India, 2023, pp. 91-96.

[4] C. S. Htwe, M. M. Su Thwin and Y. M. Thant,

"Malware Attack Detection using Machine

Learning Methods for IoT Smart Devices," 2023

IEEE Conference on Computer Applications

(ICCA), Yangon, Myanmar, 2023, pp. 329-333,

doi: 10.1109/ICCA51723.2023.10181535.

[5] S. M. Pudukotai Dinakarrao, H. Sayadi, H. M.

Makrani, C. Nowzari, S. Rafatirad and H.

Homayoun, "Lightweight Node-level Malware

Detection and Network-level Malware

Confinement in IoT Networks," 2019 Design,

Automation & Test in Europe Conference &

Exhibition (DATE), Florence, Italy, 2019, pp.

776-781, doi: 10.23919/DATE.2019.8715057.

[6] A. Sharma and H. Babbar, "An Analysis of

Android Malware and IoT Attack Detection with

Machine Learning," 2023 3rd International

Conference on Intelligent Technologies (CONIT),

Hubli, India, 2023, pp. 1-5, doi:

10.1109/CONIT59222.2023.10205931.

[7] M. Wazid, A. K. Das, J. J. P. C. Rodrigues, S.

Shetty and Y. Park, "IoMT Malware Detection

Approaches: Analysis and Research Challenges,"

in IEEE Access, vol. 7, pp. 182459-182476,

2019, doi: 10.1109/ACCESS.2019.2960412.

[8] A. Kumar and T. J. Lim, "EDIMA: Early

Detection of IoT Malware Network Activity

Using Machine Learning Techniques," 2019

IEEE 5th World Forum on Internet of Things

(WF-IoT), Limerick, Ireland, 2019, pp. 289-294,

doi: 10.1109/WF-IoT.2019.8767194.

[9] D. Park, H. Powers, B. Prashker, L. Liu and B.

Yener, "Towards Obfuscated Malware Detection

for Low Powered IoT Devices," 2020 19th IEEE

International Conference on Machine Learning

and Applications (ICMLA), Miami, FL, USA,

2020, pp. 1073-1080, doi:

10.1109/ICMLA51294.2020.00173.

[10] Y. Glani, L. Ping and S. A. Shah, "AASH: A

Lightweight and Efficient Static IoT Malware

Detection Technique at Source Code Level,"

2022 3rd Asia Conference on Computers and

Communications (ACCC), Shanghai, China,

2022, pp. 19-23, doi:

10.1109/ACCC58361.2022.00010.

[11] L. Buttyán, R. Nagy and D. Papp,

"SIMBIoTA++: Improved Similarity-based IoT

Malware Detection," 2022 IEEE 2nd Conference

on Information Technology and Data Science

(CITDS), Debrecen, Hungary, 2022, pp. 51-56,

doi: 10.1109/CITDS54976.2022.9914145.

[12] R. Raman, "Detection of Malware Attacks in an

IoT based Networks," 2022 Sixth International

Conference on I-SMAC (IoT in Social, Mobile,

Analytics and Cloud) (I-SMAC), Dharan, Nepal,

2022, pp. 430-433, doi: 10.1109/I-

SMAC55078.2022.9987253.

[13] T. Lei, Z. Qin, Z. Wang, Q. Li and D. Ye,

"EveDroid: Event-Aware Android Malware

Detection Against Model Degrading for IoT

Devices," in IEEE Internet of Things Journal, vol.

6, no. 4, pp. 6668-6680, Aug. 2019, doi:

10.1109/JIOT.2019.2909745.

[14] A. M. Alashjaee, S. Duraibi and J. Song, "IoT-

Taint: IoT Malware Detection Framework Using

Dynamic Taint Analysis," 2019 International

Conference on Computational Science and

Computational Intelligence (CSCI), Las Vegas,

NV, USA, 2019, pp. 1220-1223, doi:

10.1109/CSCI49370.2019.00229.

[15] J. Jeon, J. H. Park and Y. -S. Jeong, "Dynamic

Analysis for IoT Malware Detection With

Convolution Neural Network Model," in IEEE

Access, vol. 8, pp. 96899-96911, 2020, doi:

10.1109/ACCESS.2020.2995887.

[16] R. Kumar, X. Zhang, R. U. Khan and A. Sharif,

"Research on data mining of permission-induced

risk for Android IoT devices", Appl. Sci., vol. 9,

no. 2, pp. 1-22, Jan. 2019.

[17] P. K. Sharma, J. H. Park, Y.-S. Jeong and J. H.

Park, "SHSec: SDN based secure smart home

network architecture for Internet of Things",

Mobile Netw. Appl., vol. 24, no. 3, pp. 913-924,

Jun. 2019.

[18] Y.-S. Jeong and J. H. Park, "IoT and smart city

technology: Challenges opportunities and

solutions", J. Inf. Process. Syst., vol. 15, no. 2, pp.

233-238, Apr. 2019.

129

Research Journal of Computer Systems and Engineering (RJCSE)

Volume 4 Issue 2 (2023) | Pages: 117 – 129 | e-ISSN:2230-8571; p-ISSN: 2230-8563

https://doi.org/10.52710/rjcse.82

https://technicaljournals.org

[19] T. Lei, Z. Qin, Z. Wang, Q. Li and D. Ye,

"EveDroid: Event-aware Android malware

detection against model degrading for IoT

devices", IEEE Internet Things J., vol. 6, no. 4,

pp. 6668-6680, Aug. 2019.

[20] Show in Context View Article

[21] K. Gafurov and T.-M. Chung, "Comprehensive

survey on Internet of Things architecture security

aspects applications related technologies

economic perspective and future directions", J.

Inf. Process. Syst., vol. 15, no. 4, pp. 797-819,

Aug. 2019.

[22] S.-Y. Choi, C. G. Lim and Y.-M. Kim,

"Automated link tracing for classification of

malicious Websites in malware distribution

networks", J. Inf. Process. Syst., vol. 15, no. 1,

pp. 100-115, Feb. 2019.

[23] N. Y. Kim, S. Rathore, J. H. Ryu, J. H. Park and

J. H. Park, "A survey on cyber physical system

security for IoT: Issues challenges threats

solutions", J. Inf. Process. Syst., vol. 14, no. 6, pp.

1361-1384, Dec. 2018.

[24] A. Nieto and R. Rios, "Cybersecurity profiles

based on human-centric IoT devices", Hum.-

Centric Comput. Inf. Sci., vol. 9, no. 1, pp. 1-23,

Nov. 2019.

[25] T. A. Alghamdi, "Convolutional technique for

enhancing security in wireless sensor networks

against malicious nodes", Hum.-Centric Comput.

Inf. Sci., vol. 9, no. 1, pp. 1-10, Oct. 2019.

[26] P. K. Sharma, J. H. Ryu, K. Y. Park, J. H. Park

and J. H. Park, "Li-Fi based on security cloud

framework for future IT environment", Hum.-

Centric Comput. Inf. Sci., vol. 8, no. 1, pp. 1-13,

Aug. 2018.

