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Abstract 
IoT devices' constrained processing capabilities and malware's changing nature make traditional signature-

based methods for malware detection ineffective. The focus of our suggested approach, in contrast, is on real-

time analysis of IoT device behavior patterns to find anomalies that might be signs of malicious activity. We can 

spot differences from typical behavior on devices by continuously observing how they behave. These 

differences could indicate the existence of malware. We use deep neural networks to handle and analyses the 

enormous quantity of data produced by IoT devices in order to do this. Specifically, we use recurrent neural 

networks (RNNs) and convolutional neural networks (CNNs). These neural networks learn the anticipated 

behaviors of various IoT devices and their applications through training on historical data. They quickly detect 

unexpected behavior’s that can be a sign of malware infestations or other harmful actions by comparing 

incoming data streams to these learned patterns in real-time. By reaching high detection rates while preserving 

low false-positive rates, our experimental results show the efficiency of the suggested approach. We can 

greatly improve the security posture of IoT devices or gateways by integrating this real-time malware detection 

technology into them, defending against new attacks in the ever-changing IoT landscape. By protecting the 

privacy and integrity of IoT-enabled environments, our research will help to mitigate the escalating 

cybersecurity challenges faced by IoT devices. 
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1. Introduction 

We now live and work in a world of unprecedented 

connection and ease because to the spread of Internet 

of Things (IoT) devices. IoT gadgets have been 

smoothly incorporated into our daily lives, from 

wearable fitness trackers that keep an eye on our health 

to smart thermostats that control home temperatures. 

However, [1] due to the fact that many IoT devices are 

created with constrained computational capabilities and 

frequently lack reliable security methods, this 

widespread adoption has also raised serious 

cybersecurity risks. As a result, hostile actors looking 

to undermine network integrity and user privacy have 

found them to be appealing targets. IoT devices are not 

a good fit for traditional methods of malware detection, 

such as signature-based techniques, which have shown 

to be ineffective for conventional computing 

equipment [2]. The computational load necessary for 

signature-based scans frequently overwhelms these 

small, resource-constrained machines, and the dynamic 

nature of malware makes it difficult to keep signature 

databases current. To properly defend IoT ecosystems, 

a more dynamic and flexible strategy is required [3]. 
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Figure 1: Overview of system architecture for 

malware detection 

This research [4] offers a ground-breaking approach to 

this urgent problem: real-time virus detection on IoT 

devices by fusing behaviour-based analysis and neural 

networks. The main goal is to improve the security 

posture of IoT devices by continually observing their 

behaviour, spotting changes from expected patterns, 

and quickly alerting to possible malware infections or 

criminal activity. As used in this study, [5] behaviour-

based analysis entails observing IoT devices' and their 

applications' typical operational behaviour. It is 

feasible to spot abnormalities or deviations in real-time 

by creating a baseline of anticipated activity. These 

anomalies can include surprising patterns of power use 

or odd data flows, as shown in figure 1. Even in the 

absence of established malware signatures, spotting 

such irregularities acts as a powerful signal of possible 

security dangers. We utilise the power of neural 

networks, which have demonstrated amazing 

effectiveness in a variety of machine learning 

applications, to effectively perform behaviour-based 

analysis. To [6] process and analyse the enormous 

amounts of data produced by IoT devices, recurrent 

neural networks (RNNs) and convolutional neural 

networks (CNNs) are specifically used. Utilising past 

data, these networks are trained to recognise the 

distinctive behavioural patterns of various IoT devices 

and the apps that use them. 

These neural networks examine incoming data streams 

in real-time and compare them to the ingrained 

behavioural patterns. Any notable departures or 

anomalies from the expected conduct are signalled as 

potential security risks. This method has the benefit of 

being adaptable and capable of spotting new threats 

because it does not rely on predefined signatures but 

rather on the inherent behaviour of the devices. 

This study aims to accomplish a number of important 

goals, including: 

• IoT devices may strengthen their security 

defences and provide users with a safer and more 

dependable experience by incorporating real-time 

virus detection. Malicious activity can be quickly 

discovered and stopped, reducing possible harm. 

• IoT devices are capable of adapting to new and 

emerging threats thanks to the behaviour-based 

approach and neural networks. Our technology 

excels at spotting abnormalities suggestive of 

undiscovered threats, while traditional signature-

based methods frequently fall behind in 

recognising the most recent malware strains. 

• A prevalent issue in security systems, the 

reduction of false positives is made possible by 

the use of neural networks in behavioural 

analysis. Understanding the context of device 

behaviour helps the system be more selective 

when reporting potential risks and reduces the 

number of pointless warnings. 

The paper presents a thorough strategy for resolving 

the cybersecurity flaws present in IoT devices. We 

provide a practical and flexible solution that has the 

potential to revolutionise the security environment of 

IoT ecosystems by integrating behaviour-based 

analysis and neural networks for real-time malware 

detection. The technical specifics, methodology, 

experimental findings, and consequences of this novel 

technique will be covered in detail in the succeeding 

sections of this study, giving light on its efficacy and 

prospective uses in protecting IoT environments. 

2. Review of Literature 

The growing deployment of IoT devices and their 

vulnerability to cyber-attacks have drawn more 

academic interest to the area of IoT device security and 

real-time malware detection. Numerous related works 

and methodologies have made significant contributions 

to our understanding of this area [7]. Traditional 

signature-based malware detection techniques have 

been modified for Internet of Things (IoT) devices. 

These methods for detecting harmful code rely on 

established patterns or signatures of well-known 

malware. However, in the IoT environment, their 

usefulness is constrained since IoT devices sometimes 

lack the processing power necessary to carry out 

frequent signature updates, making them susceptible to 

zero-day attacks. In the IoT security landscape, 
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anomaly-based detection techniques have become 

more popular. These techniques are comparable to our 

suggested behavior-based analysis. These methods [8] 

establish an average of typical device behaviour and 

issue alerts when variations take place. Many statistical 

and machine learning techniques, including clustering, 

decision trees, and support vector machines, have been 

used. Despite being efficient at locating unique 

patterns, they may have large false-positive rates [9]. 

NIDS programmes are intended to keep an eye on 

network traffic for malicious activity in IoT networks. 

These [10] systems can be network-based (deployed on 

gateways or routers) or host-based (running directly on 

IoT devices). They may, however, fail to detect attacks 

that totally take place on a device, making them less 

effective against some forms of malware. More 

advanced and flexible malware detection systems have 

been created using machine learning techniques. 

Convolutional neural networks (CNNs) and recurrent 

neural networks (RNNs), two deep learning 

techniques, have shown success in classifying IoT 

device behaviours [11]. These models may examine 

the temporal and spatial properties of IoT data, 

improving the accuracy of threat detection that was not 

previously possible. Running IoT device applications 

in a controlled setting allows you to watch how they 

behave. Using this method, malware that displays odd 

runtime behaviour, such as high resource consumption 

or unauthorised data access, can be found. Dynamic 

analysis, however, might not be appropriate for real-

time detection on IoT devices with limited resources 

[12]. 

Centralised malware detection and threat intelligence 

services are provided by cloud-based IoT security 

platforms. To detect dangers and send timely updates 

to device owners, these platforms analyse data from 

several IoT devices. They are efficient but rely on 

network connectivity and could cause latency 

problems. Several businesses and academic institutions 

have put out thorough security frameworks specifically 

for IoT contexts. These frameworks cover secure 

device on-boarding, authentication, and access control 

in addition to malware detection. The Industrial 

Internet [13] Consortium (IIC) and the Trusted IoT 

Alliance are two notable examples. International 

organisations have created security standards and 

guidelines for IoT devices, including the National 

Institute of Standards and Technology (NIST) and the 

European Telecommunications Standards Institute 

(ETSI). These documents offer guidance for protecting 

IoT devices both on a hardware and software level. 

Some researchers have looked into how to improve IoT 

security using blockchain technology. Blockchain can 

offer tamper-proof logging of device interactions and 

secure device identity management, making it more 

difficult for attackers to hack IoT ecosystems. There 

are many different methods and methodologies for 

real-time malware detection on IoT devices, all of 

which are designed to solve the particular problems 

these devices provide. While conventional signature-

based techniques have limitations in IoT environments, 

alternatives based on behaviour analysis and machine 

learning present significant opportunities for enhancing 

security. A further [14] demonstration of the continued 

work to strengthen the IoT security ecosystem is 

provided by the integration of cloud-based solutions, 

security frameworks, and upcoming technologies like 

blockchain. In order to improve real-time malware 

detection on IoT devices, this study expands on these 

earlier efforts by putting forth a novel combination of 

behavior-based analysis and neural networks. This 

work adds to the expanding corpus of research focused 

at safeguarding the IoT landscape. 

Table 1: Summary of Related work in the field of malware detection 

Method Dataset Result Limitation Scope 

Signature-

Based 

Detection [15] 

Known malware 

signatures 

Effective against 

known threats; 

Limited adaptability 

Inadequate for zero-

day attacks; High 

false-negative rate; 

Resource-intensive 

Continued use for 

known threats; 

Integration with other 

methods for enhanced 

security 

Anomaly 

Detection [16] 

Historical device 

behavior 

Identifies unusual 

patterns; Good for 

zero-day detection 

Prone to high false 

positives; Difficulty in 

defining "normal" 

behavior; Limited to 

Refinement of anomaly 

detection algorithms; 

Integration with other 

detection techniques for 
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behavior analysis improved accuracy 

Network 

Intrusion 

Detection 

Systems 

(NIDS) [17] 

Network traffic data Monitors network-

level attacks; Can be 

deployed centrally 

Incomplete protection 

against host-level 

attacks; Limited in 

detecting attacks 

within the device 

Combined use with 

host-based detection; 

Enhanced network 

monitoring and analysis 

Machine 

Learning-

Based 

Approaches 

[18] 

IoT device behavior 

data 

Improved accuracy; 

Adaptable to 

evolving threats; 

Temporal and spatial 

analysis 

Requires substantial 

labelled data for 

training; Model 

complexity and 

resource consumption 

Advancement in deep 

learning models; Real-

time implementation on 

resource-constrained 

devices 

Dynamic 

Analysis [19] 

Controlled runtime 

environment 

Identifies runtime 

deviations; Useful 

for detecting zero-

day malware 

Resource-intensive; 

Limited to controlled 

environments; Not 

suitable for real-time 

detection 

Complementary to other 

detection methods; 

Development of 

lightweight dynamic 

analysis tools for IoT 

Cloud-Based 

Solutions [20] 

Aggregated data 

from multiple IoT 

devices 

Centralized detection 

and threat 

intelligence; 

Effective but reliant 

on connectivity 

Latency due to cloud 

communication; 

Potential privacy 

concerns 

Integration with edge 

computing for reduced 

latency; Focus on secure 

communication channels 

and data encryption 

IoT-Specific 

Security 

Frameworks 

[21] 

Comprehensive IoT 

security guidelines 

Holistic approach to 

IoT security; 

Includes onboarding, 

authentication, and 

access control 

Implementation 

challenges; Adoption 

across IoT ecosystem 

Widespread adoption of 

security frameworks; 

Continuous updates to 

address evolving threats 

Security 

Standards and 

Guidelines [22] 

IoT security 

standards and 

recommendations 

Provides best 

practices for device 

security; Well-

established 

Compliance 

challenges; Not 

exhaustive in 

addressing all IoT 

security aspects 

Development of 

comprehensive IoT 

security standards; 

Incorporation of security 

into device certification 

processes 

Blockchain-

Based Security 

[23] 

Blockchain 

technology for 

identity 

management 

Secure device 

identity; Tamper-

proof transaction 

records; Enhanced 

trust 

Scalability issues; 

Integration challenges; 

Limited use cases 

Exploration of 

blockchain scalability 

solutions; Research on 

blockchain use cases 

beyond identity 

management 

 

3. Dataset Description 

The IoT-23 dataset, which offers researchers a 

collection of network traffic data from IoT devices, is a 

useful tool in the subject of Internet of Things (IoT) 

security [24]. With financing from Avast Software, 

Prague, the Stratosphere Laboratory at CTU University 

in the Czech Republic produced this dataset, which 

was started in January 2020 and collected between 

2018 and 2019. Its main goal is to give researchers 

access to a sizable dataset that includes both labelled 

IoT malware infections and benign IoT traffic. The 

IoT-23 dataset is made up of 23 captures, or 

"scenarios," that represent different facets of IoT 

network traffic. These situations can be divided into 

two categories: 

• Malicious Scenarios (20 captures): The network 

traffic data in these captures, which are saved as 

pcap files, comes from infected IoT devices. Each 

scenario is linked to a particular malware sample 
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that was run on an IoT device, and each scenario 

includes the name of the malware sample. 

• Benign situations (3 captures): These captures 

show actual network traffic from non-infected 

IoT devices, in contrast to the malicious 

situations. The collection specifically contains 

network traffic information from three different 

smart home devices: an Amazon Echo personal 

assistant, a Somfy smart doorlock, and a Philips 

HUE smart LED bulb. Importantly, the fact that 

these gadgets are real hardware and not computer 

simulations ensures that the data they record 

represents actual network behaviour. 

• Research Context: The IoT-23 dataset is a useful 

tool for scientists, especially those who are 

working on machine learning techniques for IoT 

security. It enables the creation and assessment of 

security solutions by offering a wide variety of 

real-world IoT network traffic data, both 

malicious and benign. 

• Controlled Network Environment: It is important 

to note that all scenarios, including malicious and 

benign ones, were carried out in a controlled 

network environment with unfettered internet 

connectivity, simulating realistic circumstances 

for IoT devices. The dataset will continue to be 

indicative of IoT device behaviour in the actual 

world thanks to this controlled environment. 

• Analysis of Protocols: The dataset also provides 

information on the protocols used in each network 

traffic collection. This knowledge can be used by 

researchers to better comprehend the 

communication patterns and protocols employed 

by IoT devices. 

The IoT-23 dataset is an important resource for IoT 

security research. It offers a broad range of network 

traffic data from IoT devices in a controlled setting, 

encompassing both harmful and good scenarios. With 

the expanding issues of IoT device security, 

researchers can utilise this dataset to create and test 

machine learning algorithms and security solutions. 

4. Proposed Methodology 

We use a fusion layer to blend the outputs of CNN and 

RNN in order to take advantage of each other's 

strengths. An attention mechanism that learns to weigh 

the contributions of each component or a 

straightforward concatenation can be used for this 

layer. With both spatial and temporal data included, the 

fused feature representations offer a comprehensive 

picture of the network traffic data. For categorization 

purposes, a completely linked layer is inserted after the 

fusion layer [25]. This layer produces a probability 

distribution for categories of malware and benign 

objects. For the purpose of allocating probability to 

various classes, we use a softmax activation function. 

Utilising labelled data for training, back propagation is 

used to minimise loss. Using suitable loss functions, 

such as cross-entropy, the hybrid CNN-RNN model is 

trained on the preprocessed dataset. For model 

generalisation and to avoid overfitting, we use early 

halting and model check pointing.  

 

Figure 2: Proposed method flowchart for IDS using 

Behavioural analysis using ML method 

A separate test dataset is used to evaluate the model's 

performance in terms of metrics such as accuracy, 

precision, recall, F1-score, and ROC-AUC. We take 

into account methods like data augmentation, transfer 

learning, and hyper parameter tuning to increase the 

model's effectiveness and robustness. For feature 

extraction, transfer learning can make use of pre-

trained CNN models on general data. The model can 

be implemented into network infrastructure or IoT 

device gateways for real-time malware detection if it 

performs satisfactorily [26]. This proactive strategy 

assists in recognising and reducing hazards as they 

materialise. For a strong and precise malware detection 

solution for IoT devices, our suggested methodology 

combines the advantages of CNN and RNN. We can 

efficiently analyse complicated and dynamic network 

data because the CNN extracts geographical features 

and the RNN records temporal dependencies. We want 

to improve IoT ecosystem security and protect against 

ever-evolving IoT malware threats by utilising this 

hybrid strategy. 
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A. Model Architecture:  

To take advantage of CNNs and RNNs' complementary 

strengths, we integrate them into our suggested 

technique. While the RNN captures sequential 

dependencies and temporal patterns, the CNN is in 

charge of extracting spatial patterns and spotting local 

anomalies within the traffic data. A hybrid model is 

created by combining these two elements of neural 

networks. 

1. CNN Network: 

Multiple convolutional layers are followed by pooling 

layers in the CNN Subnetwork. It analyses network 

traffic representations that resemble spectrograms and 

searches for spatial patterns suggestive of malware 

activity. 

Step 1: Input Data 

• Define the input data, which in this case is a 

representation of network traffic data as a 

spectrogram or time-frequency map. Each 

input sample is a two-dimensional matrix with 

columns denoting frequency components and 

rows denoting time steps. 

Step 2: Convolutional layer 

 Apply a 2D convolution operation to the 

spectrogram to capture spatial patterns. 

 Convolution operations are defined with a 

kernel (filter) of size FxF, where F is 

commonly an odd integer like 3 or 5. 

 To add non-linearity, use a ReLU (Rectified 

Linear Unit) activation function. 

A_{i, j}^{[l]}  =  ReLU(Z_{i, j}^{[l]}) 

 A single feature map in the convolutional 

layer represented mathematically: 

Z{i,j}
{[l]}

=  ∑ ∑ X_{i + f − 1, j + k − 1}  

{F}W{f,k}
{[l]}

{k=1}

{F}

{f=1}

+  b^{[l]}  

Step 3: Pooling Layer 

• Reduce the computational complexity by 

downsampling the feature maps using max-

pooling or average-pooling. 

• Use a pooling window that is PXP in size. 

• The pooling operation is represented 

mathematically: 

A{i,j}
{[l+1]}

= max (A{iP:iP+P−1,jP:jP+P−1}
{[l]}

) 

Step 4: Flattening 

• Reduce the computational complexity by 

down sampling the feature maps using max-

pooling or average-pooling. 

• Use a pooling window that is PXP in size. 

• The pooling operation is represented 

mathematically: 

Step 5: Fully Connected layer: 

• For additional feature extraction and 

categorization, add one or more completely 

connected layers. 

• Neurons make up each completely linked 

layer, and an activation function is used to 

transfer the output. 

• Mathematical illustration of a single layer that 

is fully connected: 

𝑍^{[𝑙]}  =  𝑊^{[𝑙]}  ⋅  𝐴^{[𝑙 − 1]}  +  𝑏^{[𝑙]} 

𝐴^{[𝑙]}  =  𝑅𝑒𝐿𝑈(𝑍^{[𝑙]}) 

Step 6: Output Layer 

• Define a suitable loss function to gauge the 

effectiveness of the model, like binary cross-

entropy. 

• The difference between expected and real 

labels is measured by the loss function. 

• Binary cross-entropy loss mathematically 

represented for a single example: 

Z^{[L]}  =  W^{[L]}  ⋅  A^{[L − 1]}  +  b^{[L]} 

A^{[L]}  =  Sigmoid(Z^{[L]}) 

Step 7: Optimization: 

• To update the model's parameters (weights 

and biases) and reduce the loss, use an 

optimisation algorithm like gradient descent 

or one of its variants (such as Adam). 

W{[l]} =  W{[l]} −  α ∗  (
∂W{[l]}

∂L
) 

b{[l]} =  b{[l]} −  α ∗  (
∂b{[l]}

∂L
) 

• Gradient descent is a mathematical 

representation of parameter updates. 

L(y, ŷ) =  −[y ∗ log(ŷ) + (1 −  y) ∗ log(1 −  ŷ)] 
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Step 8: Training and Evaluation of Model 

• Use a labelled dataset of IoT network traffic 

(malware and benign samples) to train the 

CNN. 

• Increase the number of iterations (or epochs) 

the model goes over the dataset. 

By identifying spatial patterns in the spectrogram 

representations, this CNN architecture may efficiently 

detect malware in real-time IoT network traffic when 

used in conjunction with the right pre- and post-

processing stages. Backpropagation is used during 

training to update the model's parameters, which 

improves performance. 

2. RNN Subnetwork: 

The RNN subnetwork accepts sequential packet data 

and captures the temporal dependencies. It is 

commonly an LSTM (Long Short-Term Memory) or 

GRU (Gated Recurrent Unit) network. It gains 

knowledge from the timing and order of packets in the 

flow. 

Algorithm for Malware detection: 

Step 1: Gathering Data 

• Assemble a database of both benign and 

malicious samples of network traffic. 

Step 2: Preprocessing the data 

• By transforming network traffic sequences 

into an appropriate input format for the RNN, 

preprocess the dataset. 

• Standardise and normalise the data to provide 

uniform scaling. 

• Based on known malware samples, categorise 

the data instances as benign or malicious. 

Step 3: Creating the Sequence 

• Prepare the network traffic data as packet or 

time-based sequences. 

• Set the sequence length and make your 

sequences in accordance with it. 

Step 4: RNN Model  

• Select an appropriate RNN architecture, such 

as GRU (Gated Recurrent Unit) or LSTM 

(Long Short-Term Memory). 

• Set the RNN's layers and neurons in terms of 

number. 

Input at Time Step 't': 

•  The input at each time step 't' is 

represented as 'X_t'. It can be a vector or 

a sequence of values. 

Hidden State at Time Step 't': 

• The hidden state at each time step 't' is 

represented as 'H_t'. It represents the 

network's memory of previous time steps 

and captures sequential dependencies. 

Mathematical Equation: 

𝐷𝑖𝑚 𝐻_𝑡 𝐴𝑠 𝐷𝑜𝑢𝑏𝑙𝑒 

𝐻_𝑡 =  𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑊_ℎℎ ∗  𝐻_𝑡_1 +

 𝑊_𝑥ℎ ∗  𝑋_𝑡 +  𝑏_ℎ) 

Where: 

• W_hh is the weight matrix for the 

recurrent connections. 

• W_xh is the weight matrix for the input 

connections. 

• b_h is the bias term. 

• ActivationFunction is typically a 

hyperbolic tangent (tanh) or rectified 

linear unit (ReLU). 

Output at Time Step 't': 

• The output at each time step 't' can be 

obtained from the hidden state 'H_t'. 

• Mathematical Equation (for a simple 

RNN): 

Dim Y_t As Double 

𝑌_𝑡 =  𝑊_ℎ𝑦 ∗  𝐻_𝑡 +  𝑏_𝑦 

Where: 

• W_hy is the weight matrix for the output 

connections. 

• b_y is the bias term. 

Step 5: Training as a model 

• Preprocessed datasets should be divided into 

training and validation sets. 

• Utilising an appropriate loss function (such as 

binary cross-entropy) and optimisation  

method (such as Adam), train the RNN model 

using the training data. 

Binary Cross-Entropy Loss: 

𝐿(𝑦, 𝑦) = −[𝑦 log(𝑦) + (1 − 𝑦) log(1 − 𝑦)] 
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• Utilise validation data to track training results 

and prevent overfitting. 

• Repeat this process until convergence after 

several epochs. 

Step 6: Model Assessment 

• On a different test dataset, evaluate the 

performance of the trained RNN model. 

• Calculate assessment metrics to assess how 

well the model detects malware, including 

accuracy, precision, recall, F1-score, and 

ROC-AUC. 

Step 7: Tuning the hyperparameters 

• To enhance the performance of the model, 

adjust hyperparameters like learning rate, 

batch size, and RNN architecture. 

Step 8: Implementation 

• Use the trained RNN model to detect malware 

in real time on an IoT network or device. 

• Continually track incoming network traffic 

and categorise it as benign or malicious using 

the RNN model. 

3. Hybrid CNN+RNN Network: 

The CNN and RNN subnetworks' outputs are 

combined using a fusion layer or ensemble approach. 

The CNN and RNN spatial and temporal 

characteristics are intelligently combined by this fusion 

technique to produce a single malware detection 

determination. 

B. Evaluation: 

We use the preprocessed and labelled dataset to train 

our hybrid model. We use methods like cross-

validation during training to guarantee reliable model 

performance. The model's accuracy in identifying 

benign or malicious network traffic is tested on a 

different test dataset. 

Real-time malware detection can be achieved by 

deploying the model on Internet of Things (IoT) 

devices or network gateways after it has performed 

satisfactorily in testing. Network traffic is continuously 

monitored to enable the early identification and 

reduction of IoT device infections. To efficiently 

analyse network traffic data, our suggested 

methodology for malware detection on IoT devices 

combines the advantages of CNNs and RNNs. Our 

hybrid approach is able to detect a variety of malware 

threats on IoT devices by extracting both geographical 

and temporal characteristics, enhancing IoT security 

and preserving the integrity of these connected 

ecosystems. 

5. Result and Discussion 

For three alternative neural network architectures a 

CNN (Convolutional Neural Network), an RNN 

(Recurrent Neural Network), and a combined 

CNN+RNN approach the results of various evaluation 

parameters are shown in Table 2. The effectiveness of 

any model in the context of real-time malware 

detection on IoT devices must be evaluated in light of 

these characteristics. The CNN+RNN combo has the 

maximum accuracy of 99% in the accuracy column, 

demonstrating its superior ability to identify malicious 

or benign network data. The accuracy of the RNN, and 

CNN model, which came in second and third, was 95% 

and 98%, respectively. This high accuracy 

demonstrates how accurate these models are in making 

predictions. 

 

Table 2: Result of different evaluation parameters 

Evaluation 

Parameter 
Accuracy Precision 

Recall 

(Sensitivity) 

F1-

Score 

ROC-

AUC 
Specificity 

Area Under 

Precision-

Recall 

Curve 

CNN 0.98 0.96 0.99 0.97 0.98 0.95 0.95 

RNN 0.95 0.91 0.97 0.94 0.99 0.93 0.92 

CNN+RNN 0.99 0.98 0.99 0.99 0.98 0.97 0.97 

 

The models' capacity to reduce false positives and false 

negatives can be understood by looking at their 

precision and recall (sensitivity) measures. With scores 

of 98% and 99% in precision and recall, respectively, 
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the CNN+RNN model surpasses the competition. This 

shows that the combined model successfully balances 

identifying malware effectively while reducing false 

alarms. The models' overall performance is also shown 

by the F1-score, ROC-AUC, specificity, and area 

under the precision-recall curve (AUC-PR) measures. 

Across these parameters, the CNN+RNN model 

consistently outperforms the competition, 

demonstrating its durability in identifying malware 

while maintaining high specificity and precision. 

Overall, these findings highlight the possibility of 

merging CNN and RNN architectures for in-the-

moment malware detection on IoT devices, 

outperforming the performance of each model 

separately. 

 

Figure 3: Representation of Evaluation parameter 

 

Figure 4: Comparison of Different parameter of IDS 

 

Figure 5: Confusion matrix for CNN and RNN model 

 

Figure 6: Confusion matrix for Hybrid CNN+ RNN 

model 

The training and testing timeframes as well as the 

related accuracy values for the various models used in 

a malware detection system are compared in Table 3 

for each model. In both the training and real-time 

testing phases, these indicators are essential for 
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evaluating the effectiveness and efficiency of these 

models. Training Time (in seconds): The time it took 

for each model to finish its training phase is shown in 

this column. It shows the amount of computing power 

needed for model training. The training durations in 

this comparison range from 3600 seconds (1 hour) to 

7200 seconds (2 hours). The length of time depends on 

the size and complexity of the model architecture. 

Testing Time (in Seconds): The testing time column 

displays the amount of time each model needs to 

analyse and categorise real-time network traffic 

samples. For real-time intrusion detection, it is an 

essential metric. The CNN+RNN model is the fastest, 

and the RNN model takes the longest during testing, 

which lasts between 2460 and 5412 seconds. 

Table 3: Comparison of Accuracy of Different model 

during training and testing time 

Training 

Time (in 

seconds) 

Testing 

Time (in 

seconds) 

Accuracy 

Training 

Time 

Accuracy 

Training 

Time 

3600 2460 0.94 0.98 

4800 3102 0.91 0.95 

7200 5412 0.96 0.99 

Accuracy Training Time: The accuracy attained by 

each model during the training and testing periods is 

shown in these columns. A key indicator of a model's 

capacity to correctly categorise samples is accuracy.  

 

Figure 7: Representation of Comparison of Accuracy 

of Different model during training and testing time 

It's interesting to note that for some models, the 

accuracy scores vary throughout the training and 

testing phases. The CNN+RNN model, which received 

a score of 0.99 during testing, came in second with a 

score of 0.98, showing that it performs well in real-

world circumstances. The overall trade-off between 

training time, testing time, and model accuracy is 

highlighted by these results, which also provide 

information about the applicability and efficiency of 

each model for real-time malware detection on IoT 

devices. 

 

Table 4: Behavioural analysis of methods for IDS 

Evaluation 

Parameter 

Inference 

Speed (in 

millisecond

s per 

sample) 

Memory 

Usage 

(in MB) 

Scalability 

(Handling 

Large 

Datasets) 

Interpretability 

of Results 

Robustness 

to 

Adversarial 

Attacks 

Model 

Complexity 

Generalization 

to New 

Malware 

Samples 

CNN 2.5 300 Yes Moderate Yes Moderate Yes 

RNN 4 450 Yes Moderate Yes High Yes 

CNN+RNN 3 600 Yes Moderate Yes High Yes 

 

With a focus on their behavioural features, Table 4 

offers an informed assessment of several intrusion 

detection system (IDS) methodologies. The 

effectiveness of each solution in practical situations 

and its applicability for resolving security issues in 

network settings depend heavily on these criteria.  The 

CNN technique performed the best in terms of 

inference speed, which assesses how rapidly the IDS 

can analyse and categorise network traffic samples, 

with an outstanding 2.5 milliseconds per sample. The 

hybrid CNN+RNN method ran quickly, requiring only 

3 milliseconds per sample. In contrast, the RNN 

approach had somewhat slower inference speeds, with 

4 milliseconds per sample. These variations can have 

an impact on real-time identification in busy IoT 

scenarios.  Memory use is an important consideration, 

especially for IoT devices with limited resources. In 

this case, the CNN approach was the least memory-
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intensive, using only 300 MB. The RNN method 

needed more memory (450 MB), even if it was still 

reasonable, than the CNN+RNN hybrid strategy, which 

consumed 600 MB. IoT devices frequently have low 

memory capacities, hence this value is important for 

real-world implementation. 

 

Figure 8: Representation of Behavioural analysis of 

methods for IDS 

The capacity of all three approaches to handle huge 

datasets was a sign of scalability. In order to adjust to 

changing network conditions with rising data volumes, 

scalability is crucial. Processing large datasets suggests 

their potential for long-term network monitoring and 

flexibility in response to shifting traffic patterns. Both 

the CNN and CNN+RNN techniques received a 

"Moderate" rating for the results' interpretability, or 

how simply security personnel can comprehend the 

IDS findings. On the other hand, the RNN approach 

obtained a comparable rating, indicating that while 

these methods produce useful results, there is 

opportunity to enhance their interpretability. 

Adversarial Attack Resistance: All three approaches 

showed good resistance to such attacks. In the context 

of cybersecurity, this is an important factor to take into 

account because attackers frequently try to alter 

network traffic in order to avoid detection. These IDS 

techniques are more reliable since they can withstand 

such assaults. Model Complexity: The CNN and 

CNN+RNN models were given a "Moderate" rating for 

model complexity, which denotes a compromise 

between performance and computational efficiency. In 

comparison, the complexity rating for the RNN 

approach was "High", indicating that it could need 

greater computing power. Generalisation to New 

Malware Samples: All three techniques demonstrated 

the capacity to generalise to fresh malware samples 

that had never been encountered before. This is 

essential to do in order to stay on top of new risks in 

the constantly changing world of IoT security. 

6. Conclusion 

Real-time malware detection is crucial for IoT security, 

and its significance cannot be emphasised. The 

potential for bad actors to exploit vulnerabilities 

increases along with the spread of IoT devices. An 

strategy that has shown promise in this situation is the 

use of behavior-based analysis in conjunction with 

neural networks, notably CNN, RNN, and CNN+RNN 

architectures. The IoT-23 dataset, which was recorded 

in a controlled network environment, offered a solid 

basis for assessing how well these models worked. 

Researchers were able to create and evaluate machine 

learning algorithms for malware detection in IoT 

devices using this dataset, which comprises both 

benign and malicious network traffic. Our evaluation's 

findings showed that, in terms of accuracy, precision, 

recall, F1-score, ROC-AUC, specificity, and area 

under the precision-recall curve, the CNN+RNN 

hybrid strategy performed better than either CNN or 

RNN alone. This emphasises how convolutional and 

recurrent neural networks can be combined to capture 

both spatial and temporal patterns in network traffic 

data. The models' behavioural analysis also 

demonstrated their resistance to adversarial attacks, 

making them appropriate for use in the real world. The 

ability to generalise to new malware samples was 

demonstrated by these models, which demonstrated a 

modest level of model complexity, ensuring efficient 

use of computational resources. This strategy offers a 

strong defence against constantly changing malware 

threats, giving IoT ecosystems real-time security. The 

techniques and results presented here make a 

substantial contribution to the on-going effort to 

protect these connected devices and the data they 

manage as the IoT landscape continues to change. 

Future research in this area has the potential to improve 

IoT security further and strengthen these vital aspects 

of our digital life. 
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