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Abstract 
For sustainable food production, precision agriculture is essential, and one of its main tenets is the precise 

identification and ongoing surveillance of plant diseases. Conventional approaches to illness monitoring and 

detection are frequently labour-intensive, time-consuming, and dependent on visual inspection, which 

increases the risk of misidentifying diseases. Deep learning algorithms have surfaced as a potentially effective 

way to tackle these issues. In this study, we introduce a novel method for precision agriculture that improves 

plant disease diagnostic accuracy and offers continuous monitoring by utilising deep learning algorithms. Our 

research uses cutting-edge convolutional neural networks (CNNs) and ResNet50 to precisely identify illness 

symptoms in plant photos. The proposed deep learning model is trained on an extensive dataset of plant photos 

illustrating a range of illnesses, enabling it to identify minute visual cues that human observers might overlook. 

Compared to previous ML methods, the model's accuracy in detecting diseases is higher, which lowers the 

possibility of misdiagnosis and facilitates early intervention to minimise crop damage. By placing cameras and 

sensors in the fields, proposed system provides continuous monitoring in addition to precise diagnosis. The 

proposed deep learning model processes the real-time data and photos of the crops that are captured by these 

devices. 
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1. Introduction 

Historically, farmers or other agricultural specialists 

have primarily relied on visual inspection for the 

detection of plant diseases. Nevertheless, this manual 

method is prone to subjectivity and human error, and it 

frequently misses early disease detection. This can lead 

to incorrect and ineffective treatment decisions due to 

misdiagnoses [1]. Furthermore, a delay in disease 

detection can lead to large crop losses and increased 

resource consumption, which is bad for the 

sustainability of the environment and agricultural 

output. Deep learning algorithms, a branch of artificial 

intelligence, have become a potent tool to tackle these 

issues in recent years. Convolutional neural networks 

(CNNs), one type of deep learning algorithm, have 

shown impressive results in pattern recognition and 

picture analysis. They are currently significantly 

advancing precision agriculture after being effectively 

used in a number of fields, such as computer vision and 
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healthcare [2]. Deep learning and precision agriculture 

together have the potential to completely change how 

plant diseases are identified and tracked. Within this 

framework, our work focuses on applying deep learning 

algorithms for precise plant disease diagnosis and 

ongoing surveillance.  

 

Figure 1: Representation of Precision farming 

The use of cutting-edge technologies in agriculture, 

sometimes known as intelligent or precision agriculture, 

has the potential to completely change how we grow 

crops. These strategies make use of cutting-edge 

technologies and data-driven solutions to improve 

agricultural output, cut down on resource waste, and 

solve issues facing the industry. As intelligent 

agriculture technologies are crucial in giving farmers 

access to critical environmental data from their farms. 

By using these data-driven insights, farmers may 

increase their profitability and competitiveness by 

making well-informed decisions [3]. In this context, the 

integration of artificial intelligence (AI) with cloud-

based technologies is especially effective. This 

integration seamlessly combines human experience with 

AI-driven insights to make agricultural processes more 

transparent and to improve decision-making.  

AI systems have the ability to be both proactive and 

reactive. They [4] make it possible to gather and analyse 

data in real-time, which makes it possible to identify 

problems like soil conditions or plant diseases and take 

prompt action. This data-driven, real-time strategy 

boosts crop productivity and efficiency. The idea of 

"smart agriculture," in which AI-powered devices can 

identify crops, assess soil conditions, provide 

professional advice, and even help farmers find new 

business ventures, is gaining traction. These systems 

frequently rely on stochastic AI technologies, which are 

capable of responding and adapting to changing 

circumstances according to the knowledge they learn. 

AI systems are useful tools for agriculture because of 

their adaptability and capacity to learn and develop over 

time. Agriculture is not the only sector using AI and 

data analytics to supplement traditional methods. It 

includes contemporary technologies such as the Internet 

of Things (IoT) and wireless sensor networks (WSN). 

Large volumes of field data may be collected thanks to 

these technologies, and AI techniques can be used to 

analyse the data. As was previously indicated in relation 

to cotton leaf diseases, this combination is very useful 

for applications like disease detection and control in 

crops. AI is also driving advancements such as 

computerised irrigation systems, driverless tractors, and 

the use of robots and drones for diverse agricultural 

jobs. These developments are intended to ensure 

accurate and data-driven decision-making, lower labour 

costs, and increase the efficiency of routine agricultural 

tasks. 

The paper key contribution is given as: 

• Precision and intelligent agriculture, with use of 

deep learning techniques in agriculture, provide a 

data-driven strategy to maximise crop productivity 

while lowering resource consumption and 

environmental effect. 
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• The integration of deep learning model with IoT 

Sensor data to offer data and insights in real-time, 

facilitating early disease identification, effective 

irrigation, and customised solutions to region-

specific problems. 

• AI based DL model are flexible, they can 

effectively handle the particular and changing 

aspects of every farming situation, resulting in 

higher productivity and production. 

 

2. Related Work 

Through intelligent and precision agriculture, artificial 

intelligence (AI) is being incorporated into agriculture 

as part of a data-driven plan to maximise crop yield 

while minimising resource use and environmental 

effects. AI technologies are essential because they give 

farmers access to real-time data and insights. This gives 

them the ability to quickly recognise and handle 

problems such as crop diseases, put effective irrigation 

systems in place, and adjust their strategy to the 

particular difficulties that are particular to their area [5]. 

The versatility of AI systems is one of its main 

advantages in agriculture. These systems are well-suited 

to handle the constantly shifting and site-specific 

elements of various farming situations, which 

eventually results in higher agricultural production and 

productivity. Furthermore, AI-driven advancements are 

revolutionising and simplifying typical agricultural 

operations. Examples include the utilisation of robotic 

aid, drones, and driverless tractors. In the end, these 

technologies contribute to more profitable and 

sustainable farming practises by increasing operational 

efficiency and lowering labour expenses. 

Precision agriculture [6] is a farming technique that has 

gained popularity recently. It integrates cutting-edge 

technologies to increase agricultural productivity and 

sustainability. Accurately diagnosing and continuously 

monitoring plant diseases is a crucial component of 

precision agriculture, as it can significantly affect crop 

yields, resource use, and environmental sustainability. 

We will examine the history and relevant research in 

this area in this section, emphasising the development of 

precision agriculture as well as the roles that deep 

learning and artificial intelligence have had in the 

detection and monitoring of plant diseases. Over the 

past few decades, precision agriculture has undergone 

tremendous evolution due to technological 

advancements and the growing need to solve the issues 

that modern agriculture faces. In the past, farming 

methods relied on consistent methods, handling entire 

fields in the same way. But frequently, this led to the 

abuse of resources like water, fertiliser, and pesticides 

which raised production costs and degraded the 

environment. 

The advent of global positioning system (GPS) 

technology, which allowed farmers to map their fields 

and apply treatments more precisely, marked the 

beginning of the transition towards precision 

agriculture. This [7] signified the first moves in the 

direction of farming that is more data-driven. Drones 

and other remote sensing tools, such as satellite 

photography, have made it possible to gather important 

data on crop stress, soil conditions, and plant health as 

technology has developed. These advancements made it 

possible to use more exact and productive farming 

techniques. In the world of agriculture, the combination 

of deep learning and artificial intelligence (AI) has 

changed everything. These technologies are perfect for 

disease detection and plant health monitoring since they 

have shown to be especially effective in jobs involving 

image processing and pattern recognition. In this 

context, the application of convolutional neural 

networks (CNNs), a family of deep learning models, has 

proved essential. CNNs can accurately identify disease 

symptoms in plants because of their ability to absorb 

images and recognise intricate patterns. Large databases 

of plant photos have been used by researchers to train 

CNNs, enabling these algorithms to recognise even 

minute visual clues that may escape human observers. 

For the purpose of early disease detection and focused 

intervention, this degree of precision is essential. 

Precision agriculture's primary objective is early disease 

diagnosis. Early illness detection is crucial to stop the 

spread of infections and lessen possible agricultural 

damage [8]. Conventional disease diagnosis techniques, 

which frequently rely on visual inspection, are 

subjective and could miss early-stage illnesses. AI-

powered systems that have CNNs installed have proven 

to be remarkably accurate at diagnosing illnesses. They 

are able to recognise illness indications in plant photos 

even before humans do, thanks to their ability to analyse 

them. Farmers can take prompt and targeted action, such 

as modifying irrigation schedules, modifying fertiliser 

applications, or using insecticides sparingly, thanks to 

this early detection. This leads to higher crop yields as 

well as less resource use and less agricultural effect on 

the environment. 
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Continuous monitoring [9] of plant health is equally 

vital as early disease diagnosis. Between a diagnosis 

and harvest, a lot can happen in agriculture. Stress 

factors fluctuate, diseases alter, and conditions change. 

As a result, it is crucial to continuously monitor the 

crops' health. This is where systems driven by AI shine. 

These systems are able to obtain data and photographs 

of the crops in real time by placing cameras and sensors 

in the fields. Deep learning algorithms that can quickly 

identify any indications of illness, stress, or anomalies 

are then trained on these data. This allows for quick 

reactions, like automatically adjusting irrigation or 

applying medicines tailored to a particular disease, 

improving crop health and increasing sustainability. 

Water pollution and soil degradation are two major 

environmental problems that are largely caused by 

agriculture. With the help of AI and deep learning, 

precision agriculture provides a way to lessen farming's 

environmental impact. These systems encourage more 

environmentally friendly farming methods that save the 

environment by using proactive disease management, 

optimising resource utilisation, and only administering 

treatments when absolutely essential [10]. 

 

Table 1: Summary of related work in Precision Agriculture 

Algorithm Plant Disease 

Dataset 

Finding Limitation Application 

Convolutional 

Neural Nets [11] 

Plant Village 

Dataset 

Achieved high accuracy in 

disease detection. 

Limited to a specific set 

of diseases. 

Disease diagnosis 

Support Vector 

Machine [12] 

UCI's Plant 

Diseases Dataset 

Effective in classification, 

including crop types. 

May require feature 

engineering. 

Crop 

classification 

Random Forest [13] Open 

Agriculture 

Dataset 

Robust to noise in data and 

capable of real-time 

monitoring. 

Limited scalability for 

large datasets. 

Disease 

monitoring 

Deep Learning 

Ensemble [14] 

Customized 

dataset 

Improved disease detection 

and reduced false positives. 

Dependency on high 

computational 

resources. 

Disease 

identification 

Decision Trees [15] Image-based 

dataset 

Provided interpretable 

models for disease 

identification. 

Less accurate than deep 

learning models. 

Disease diagnosis 

K-Nearest 

Neighbors [16] 

Open Data Portal 

Dataset 

Effective for small-scale 

farming applications. 

Sensitive to noise and 

irrelevant data. 

Small-scale 

agriculture 

Long Short-Term 

Memory [17] 

Localized dataset Suitable for time series 

data, such as weather and 

disease history. 

Limited to specific data 

types. 

Predictive 

modeling 

Recurrent Neural 

Networks [18] 

Plant-specific 

dataset 

Improved sequential 

disease tracking over time. 

Complex model 

architecture. 

Time-series 

analysis 

Gradient Boosting 

[19] 

Multi-source 

datasets 

High predictive power for 

disease occurrence. 

Prone to overfitting 

with limited data. 

Disease 

forecasting 

Bayesian Networks 

[20] 

Remote sensing 

data 

Effective in integrating 

diverse data sources. 

Requires domain 

expertise for modeling. 

Data integration 

Convolutional 

LSTM [21] 

Aerial imagery 

dataset 

Enhanced monitoring of 

plant stress and disease 

progression. 

Limited spatial 

resolution in aerial 

imagery. 

Aerial monitoring 

Extreme Learning 

Machines [22] 

Multispectral 

dataset 

Rapid and efficient 

processing of multispectral 

data. 

Less interpretable 

compared to traditional 

methods. 

Multispectral 

analysis 

Neural Networks 

Ensemble [23] 

IoT sensor data Real-time monitoring of 

environmental conditions. 

Dependent on sensor 

data accuracy. 

IoT in agriculture 
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Support Vector 

Regression [24] 

Climate and soil 

data 

Effective in modeling 

climate-plant disease 

relationships. 

Dependency on 

accurate climate data. 

Climate-based 

disease modeling 

Hidden Markov 

Models [25] 

Spatial and 

temporal data 

Improved spatial and 

temporal disease tracking. 

Complexity in model 

calibration. 

Spatial-temporal 

analysis 

Deep 

Reinforcement 

Learning [26] 

Customized 

drone data 

Autonomous monitoring 

and treatment of plant 

diseases. 

High computational 

requirements for 

training. 

Drone-based 

agriculture 

 

3. Plant village Dataset 

Researchers, farmers, and other agricultural 

professionals interested in plant pathology and 

precision agriculture will benefit greatly from the Plant 

Village Dataset. It is made up of an extensive library of 

excellent photos of sick plant leaves, each labelled with 

the precise disease that is depicted in the photo. This 

dataset is an effective resource for developing and 

accessing machine learning models that effectively 

identify plant diseases, especially those that make use 

of computer vision and deep learning techniques. The 

dataset is adaptable for a variety of applications 

because it includes a broad range of plant species and 

diseases. It assists professionals and AI models in 

differentiating between various plant diseases, 

including bacterial, viral, and fungal infections, as well 

as physiological issues. The information can be used 

by researchers to create AI-powered systems for 

ongoing monitoring, early disease identification, and 

treatment strategy optimisation. Furthermore, 

developing and evaluating machine learning algorithms 

for autonomous disease diagnosis is made simpler by 

the availability of labelled data. This is essential for 

tackling the problems in contemporary agriculture 

since it makes tailored management practises and early 

intervention possible, which in turn improves crop 

health and output. Through its ability to facilitate the 

development of reliable and accurate disease diagnosis 

tools for a broad range of crops and locales, the 

PlantVillage Dataset plays a crucial role in promoting 

precision agriculture and enhancing food security. 

 

Figure 2: Sample of Plant leaf disease from 

PlantVillege Dataset 

4. Different Types of Plant Disease 

1. Rice with Bacterial Leaf Blight: 

The damaging disease known as Bacterial Leaf Blight 

(BLB) targets rice crops. The bacteria Xanthomonas 

oryzae pv. oryzae is the cause of it. Water-soaked sores 

on the leaves caused by BLB eventually develop into 

blighting symptoms. In areas with moderate 

temperatures and high humidity, the disease is most 

severe. Crop rotation, the use of copper-based 

bactericides, and the planting of disease-resistant rice 

cultivars are all necessary for the effective 

management of BLB. 

2. Potato and tomato late blight: 

Potatoes and tomatoes are susceptible to the infamous 

illness known as late blight, which is brought on by the 

oomycete Phytophthora infestans. The 19th-century 

Irish Potato Famine was caused by it. Dark lesions on 

leaves, stems, and fruits are the hallmark of late blight, 

which quickly destroys crops. Planting resistant 

cultivars, utilising appropriate watering techniques, and 

sparingly applying fungicides are some disease 

management options. 

3. Canker of Citrus: 

A bacterial disease known as citrus canker mostly 

affects citrus plants, which includes grapefruits, 

oranges, and lemons. Xanthomonas axonopodis is the 



 
 

36 

Research Journal of Computer Systems and Engineering (RJCSE)  

Volume 4 Issue 2 (2023) | Pages:  31 – 45 | e-ISSN:2230-8571; p-ISSN: 2230-8563 

https://doi.org/10.52710/rjcse.72 

 

https://technicaljournals.org 

cause. Elevated lesions on leaves, fruit, and stems are 

among the symptoms. Fruit that has infection may 

become unsellable. Strict hygienic regulations, the 

removal and destruction of diseased trees, and the 

application of copper-based sprays are all part of 

management. 

4. Rust in Wheat: 

A fungus called wheat rust attacks wheat harvests. Rust 

illnesses are caused by a variety of species of rust 

fungi, including Puccinia triticina, P. graminis, and P. 

striiformis. Reddish-brown pustules on the leaves and 

stems are the visible sign of rusts, which lower 

photosynthetic potential. Planting resistant wheat types 

and using fungicides when needed are essential to 

managing wheat rust. 

5. Grape Powdery Mildew: 

A fungus called powdery mildew damages grapes and 

other crops. Several species of the Erysiphales order, 

including Erysiphe necator, are the cause of it. A 

white, powdery buildup on the surfaces of fruit and 

foliage is one of the symptoms. Growers can utilise 

canopy management strategies, plant vines at the 

appropriate spacing, and administer fungicides as 

needed to control powdery mildew in grapes. 

6. Potatoes and Tomatoes with Early Blight: 

The fungus Alternaria solani is the source of the 

widespread disease known as "early blight," which 

affects potatoes and tomatoes. It can result in 

defoliation and black, concentric lesions on leaves. 

Crop rotation, the use of disease-free seeds, and the 

prophylactic use of fungicides are some methods for 

managing diseases. 

7. Scab on Apple: 

Apple trees are susceptible to the fungus Venturia 

inaequalis, which causes apple scab. The fruit and 

foliage get black, scaly sores as a result. Growers can 

plant resistant apple cultivars, administer fungicides as 

needed, prune and thin apples properly, and manage 

apple scab. 

8. Cucurbits with Downy Mildew: 

Cucurbit crops, including squash, melons, and 

cucumbers, are susceptible to a disease called downy 

mildew. The oomycete Pseudoperonospora cubensis is 

the cause of it. Yellow, angular blemishes on leaves are 

one of the symptoms. Planting resistant types, 

managing irrigation well, and using fungicides when 

necessary are all part of disease control. 

9. In bananas, Black Sigatoka: 

The fungus Mycosphaerella fijiensis is the cause of 

Black Sigatoka, a serious disease that affects banana 

plants. It causes the leaves to develop black, necrotic 

lesions, which may hinder photosynthesis. Using 

disease-resistant banana cultivars and applying 

fungicides on a regular basis are key components in 

managing Black Sigatoka. 

10. Leafrolling disease of grapevines: 

A virus called grapevine leafroll disease attacks 

grapevines. Grapevine leaves get crimson and roll as a 

result of it. The main ways to handle this illness are to 

use virus-resistant rootstocks, disease-free vines, and 

good vineyard cleanliness practises. 

Table 2: Summary of Different types of plant disease 

Plant Disease Plant Disease 

Type 

Occurred in 

Season 

Effect Pesticide Region 

Bacterial Leaf 

Blight 

Rice Bacterial Wet and 

warm season 

Reduced yield, leaf 

lesions 

Copper-based 

bactericides 

Global, esp. 

Asia 

Late Blight Potatoes and 

Tomatoes 

Fungal Cool and wet 

season 

Rapid crop 

destruction, lesions 

Fungicides Worldwide 

Citrus Canker Citrus trees Bacterial Warm and 

humid season 

Lesions, fruit 

blemishes 

Copper-based 

sprays 

Citrus-

growing 

regions 

Wheat Rust Wheat Fungal Warm and 

humid season 

Reduced 

photosynthesis, yield 

loss 

Fungicides Global, wheat 

belts 

Powdery Grapes Fungal Warm and Reduced Fungicides Grape-growing 
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Mildew dry season photosynthesis, fruit 

damage 

regions 

Early Blight Tomatoes and 

Potatoes 

Fungal Warm and 

humid season 

Defoliation, lesions 

on leaves 

Fungicides Worldwide 

Apple Scab Apple trees Fungal Wet and cool 

season 

Scaly lesions on fruit 

and leaves 

Fungicides Apple-growing 

regions 

Downy 

Mildew 

Cucurbits Fungal Humid 

conditions 

Angular yellow 

lesions on leaves 

Fungicides Cucurbit-

growing 

regions 

Black 

Sigatoka 

Bananas Fungal Warm and 

wet season 

Leaf lesions, reduced 

photosynthesis 

Fungicides Banana-

growing 

regions 

Grapevine 

Leafroll 

Disease 

Grapevines Viral All weather 

season 

Reddening and 

rolling of grape 

leaves 

No specific 

treatment 

Vineyard 

regions 

 

5. Material and Method 

1. Irrigation Management: 

A key element of precision agriculture is irrigation 

management, which maximises the amount of water 

used for crop production. It entails the careful 

management of water resources to suit the unique 

requirements of crops while accounting for variables 

including plant growth stage, soil moisture content, and 

weather.  Real-time data collection and processing is 

essential to precision agriculture. Information on soil 

moisture levels, plant status, and weather forecasts is 

gathered using a variety of sensors, weather stations, 

and remote sensing technologies. Making educated 

judgements about irrigation requires this data [12]. 

Precision agriculture determines precisely how much 

water crops require by combining data from many 

sources. This prevents both over-irrigation, which can 

cause water waste, nutrient leaching, and soil erosion, 

and under-irrigation, which can result in drought stress 

and lower yields. Variable rate irrigation is made 

possible by precision agriculture, allowing various 

sections of a field to receive different quantities of 

water according to their unique needs. This is 

particularly useful in fields with different kinds of soil 

and different topographies. Water distribution is 

precise and reliable thanks to automation, which is 

provided by systems like centre pivot irrigation, 

sprinkler systems, and drip irrigation. These devices 

can be remotely managed in accordance with crop 

water requirements and real-time data. 

 

 

2. Paste and Disease control: 

Controlling diseases and pests is an essential part of 

plant protection. In order to control and lessen the 

effects of plant diseases, a variety of materials, 

including chemical and biological agents, are applied. 

Chemical pesticides, including insecticides and 

fungicides, are frequently employed to eradicate pests 

and diseases that pose a risk to agricultural 

productivity. These compounds lessen crop damage, 

stop the spread of illness, and increase yields. 

Nonetheless, worries regarding chemical pesticides' 

effects on the environment and human health are 

mounting [17]. As a result, integrated pest management 

(IPM) and sustainable agricultural methods are 

becoming more and more popular. By combining a 

number of tactics, such as crop rotation, resistant plant 

varieties, and biological management via the use of 

beneficial organisms, these methods efficiently 

preserve plants while reducing the need for chemical 

pesticides. In order to maintain the long-term health 

and production of agricultural systems while 

minimising their ecological footprint, sustainable 

methods of managing pests and diseases are crucial. 

3. Farm Field Monitoring: 

Precision agriculture relies heavily on agricultural field 

monitoring, which provides farmers with a data-driven 

method to maximise crop productivity and 

sustainability. It entails gathering data in real-time on 

variables like soil quality, weather, plant health, and 

insect infestations using a variety of technologies, such 

as sensors, drones, satellites, and remote sensing. 

Farmers are able to make well-informed decisions on 
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crop care, including fertilisation, irrigation, and disease 

management, thanks to this abundance of information. 

Farm field monitoring has several advantages in 

precision agriculture [15].  

 

Figure 3: System Architecture of Proposed system 

Model 

It makes early disease identification, effective use of 

resources, and focused interventions possible, all of 

which raise crop yields and quality. It lessens 

production costs and its negative effects on the 

environment by using less water, fertiliser, and 

pesticides than necessary. Monitoring farm fields also 

helps to ensure sustainability by making sure that 

resources are used wisely, as shown in figure 3. Farm 

field monitoring is expected to become increasingly 

important as technology develops, contributing to both 

meeting the world's food needs and reducing the 

environmental impact of farming methods. 

4. Deep learning Methods:  

A. CNN: 

CNNs have shown impressive precision in recognising 

plant illnesses through the analysis of photos of fruit, 

leaves, or stems. Early and accurate diagnosis is made 

possible by their capacity to identify minute visual 

cues and patterns linked to a variety of diseases. 

Because of its accuracy, there is a lower chance of a 

misdiagnosis, allowing for prompt intervention to 

minimise crop loss and improve treatment plans [10]. 

The availability of extensive and varied datasets, like 

the PlantVillage Dataset, which contains pictures of 

sick plants, is responsible for the effectiveness of 

CNNs in the detection of plant diseases. These datasets 

improve the CNNs' diagnostic abilities by allowing 

them to learn and generalise from a broad range of 

symptoms and disease kinds. 

Algorithm: 

1. Data collection: Compile a dataset of pictures of 

plants along with labels indicating whether or not 

the plants are unhealthy. We can denote this 

dataset as D={(X_1, Y_1), (X_2, Y_2),..., (X_N, 

Y_N)}, where X_i denotes the image that is at 

index i and Y_i represents the label. 

2. Data preprocessing: Increase the dataset's 

diversity by augmenting it, normalising pixel 

values, and resizing the photos to a consistent 

size. 

3. CNN Architecture: Select the suitable CNN 

architecture. We'll mark this as A. 

4. Model Initialization: Use random weights to start 

the CNN model A. The weights of the model are 

denoted by the symbol A(θ). 

5. Model Training: Use the dataset D to teach the 

CNN model the characteristics and patterns 

connected to both healthy and unhealthy plants. 

This entails minimising a loss function L across 

the dataset, which is usually a cross-entropy loss: 

𝜃 ∗ =  𝑎𝑟𝑔𝑚𝑖𝑛(𝛴 𝐿(𝐴(𝑋_𝑖;  𝜃), 𝑌_𝑖)) 

Configure a system for continuous monitoring by 

employing cameras or sensors to take pictures of plants 

on a regular basis. S can be used to depict this system. 

6. Image processing: Prepare the continually 

acquired images to conform to the input format 

that the CNN model that has been trained is 

expecting. Resizing, normalisation, and other 

required modifications might be part of this. 

7. Continuous Inference: To determine whether the 

plants are healthy or ill, apply the trained CNN 

model A(θ*) to the preprocessed photos from the 

monitoring system S. The likelihood of being 

healthy can be calculated using the following 

equation: 

𝑃(𝑌 = 𝐻𝑒𝑎𝑙𝑡ℎ𝑦 | 𝑋)  =  𝐴(𝑋;  𝜃 ∗)[0] 

Where, 

A(X; θ*)[0] is the CNN's output for the "healthy" class 

and  

P(Y=Healthy | X) is the likelihood that the plant is 

healthy given the input picture X. 

8. Thresholding: Using the probability found in step 

8, establish a threshold value to categorise plants 

as healthy or ill. For example, define the plant as 

healthy if P(Y=Healthy | X) > 0.5; otherwise, 

categorise it as diseased. 
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9. Action and Intervention: Depending on the 

classification, manage the health of the crops by 

implementing treatments, adjusting irrigation, or 

sending out notifications. 

B. ResNet50: 

Because of its deep design, ResNet-50 is able to 

identify minute details and complex patterns linked to 

plant illnesses. Based on pictures of leaves, stems, or 

fruit, it excels at accurately classifying healthy and 

unhealthy plants. The network is able to retain high 

accuracy when learning from huge and diverse datasets 

because of its depth and skip-connections, which assist 

avoid the vanishing gradient problem. ResNet-50 has 

the advantage of being appropriate for transfer 

learning. Large image datasets can be used to fine-tune 

pre-trained algorithms for specific plant disease 

diagnosis applications. Because of the substantial 

reduction in the requirement for large amounts of 

labelled data and training time, this is a viable option 

for agricultural applications. In agricultural settings, 

cameras and sensors can be included into monitoring 

systems with ResNet-50. Plant health may be 

continuously monitored thanks to the network's 

processing of real-time data and photos. Rapid 

detection enables prompt action in the event of any 

illness, stress, or anomaly. 

Algorithm: 

Step 1: Gathering and Preparing Data 

• Gather a dataset D of labels for plant photos 

(D = {(X_1, Y_1), (X_2, Y_2),..., (X_N, 

Y_N)}), where Y_i denotes the label (healthy 

or diseased) and X_i represents the image. 

• Resize the photos to a standard scale and 

normalise the pixel values as part of the 

preprocessing step. The preprocessed dataset 

is represented by the notation D' = {(X_1', 

Y_1), (X_2', Y_2),..., (X_N', Y_N}. 

Step 2: Initialising the Model 

• Set the initialization of the ResNet-50 model 

to A(θ), where θ denotes the weights of the 

model. 

Step 3: Training Models 

• Utilising the preprocessed dataset D', train the 

ResNet-50 model to identify patterns and 

features linked to both healthy and ill plants. 

Over the dataset, this entails minimising a 

cross-entropy loss function L: 

∗ 𝜃 =  𝑎𝑟𝑔𝑚𝑖𝑛(𝛴 𝐿(𝐴(𝑋_𝑖′;  𝜃), 𝑌_𝑖)) 

Step 4: Configuring Continuous Monitoring 

• Install sensors or cameras as part of a 

monitoring system to continuously take 

pictures of the plants. 

Step 5: Ongoing Interpretation 

• Pre-process and continuously take pictures 

from the monitoring system. 

• Utilise the trained ResNet-50 model A(θ*) on 

the preprocessed photos to make the diagnosis 

of illness or health in the plants. Use the 

softmax function to determine your likelihood 

of being well or ill: 

𝑃(𝑋′;  𝜃 ∗))  =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐴(𝑋′;  𝑌 = 𝐻𝑒𝑎𝑙𝑡ℎ𝑦))𝐼𝑛 [0] 

𝑃(𝑋′;  𝜃 ∗))  

=  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐴(𝑋′;  𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝑑 | 𝑋))(𝐼𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎) 

Step 6: Making Decisions and Thresholding 

• Establish a cutoff point for the classification, 

such as 0.5. Categorise the plant as healthy if 

P(Y=Healthy | X) > 0.5; if not, categorise it as 

diseased. 

6. Result and Discussion 

The results of disease detection employing two deep 

learning models, CNN and ResNet-50, in a plant 

monitoring and diagnostic scenario are shown in 

Tables 2 and 3. These tables compare the diseases that 

are actually shown in the plant photos, the diseases that 

the models predict, and the corresponding odds of 

having a disease or not. The first table, Table 2, shows 

the outcomes of the deep learning model ResNet-50. In 

this instance, the model's predictions show a high 

degree of consistency and accuracy. As an illustration, 

the model accurately detects a healthy leaf in Image ID 

111 with a high probability of 0.98, demonstrating a 

high level of confidence. Likewise, for a number of 

diseases, including Citrus Canker, Apple Scab, and 

Early Blight, the model's predictions match the 

illnesses that are actually seen in the pictures. With 

most of the probabilities favouring the expected 

diseases, the probabilities shed light on how confident 

the model is in its predictions.  
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Table 2: Result for disease detection by ResNet50 Deep Learning Model 

Image 

ID 

Image 

Type 

Actual Disease Predicted 

Disease 

Probability 

(Healthy) 

Probability 

(Diseased) 

111 Leaf Healthy Healthy 0.98 0.02 

112 Fruit Apple Scab Apple Scab 0.71 0.29 

113 Leaf Early Blight Early Blight 0.84 0.16 

114 Fruit Citrus Canker Citrus Canker 0.96 0.04 

115 Stem Wheat Rust Wheat Rust 0.61 0.39 

116 
Leaf Powdery 

Mildew 

Powdery Mildew 
0.91 0.09 

117 Fruit Black Sigatoka Black Sigatoka 0.76 0.24 

118 Stem Late Blight Late Blight 0.66 0.34 

119 Leaf Healthy Healthy 0.98 0.02 

120 Fruit Apple Scab Apple Scab 0.71 0.29 

 

 

Figure 4: Plant Disease Predictions and Probabilities 

using RestNet50 Model 

Table 3 shows the outcomes using a deep learning 

model based on CNN. Similar to ResNet-50, the CNN 

model performs admirably when it comes to illness 

detection. With a high probability, it accurately detects 

both healthy and unhealthy plant parts, including 

leaves, fruits, and stems. As an illustration, Image ID 

112 demonstrates that the CNN model accurately 

predicts Apple Scab, with a 0.32 likelihood of the plant 

being ill. This indicates that the diseases depicted in 

the photographs correspond with the predictions made 

by the model. 

 

Figure 5: Plant Disease Predictions and Probabilities 

using CNN Model 

The potential for precise and dependable disease 

diagnosis in plant monitoring is demonstrated by both 

deep learning models. They offer information about the 

likelihoods connected to each prediction, which can be 

utilised to make deft choices about essential activities, 

like receiving further monitoring or receiving 

medication. Tables 2 and 3's results demonstrate how 

well CNN and ResNet-50, two deep learning models, 

detect plant diseases. These algorithms can measure 

the degree of confidence in each forecast while 

precisely classifying the health status of different plant 

components. Precision agriculture could benefit greatly 

from these discoveries as they could allow for prompt 

responses to successfully manage and prevent plant 

diseases. 
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Table 3: Result for disease detection by CNN Deep learning Model 

Image 

ID 

Image 

Type 

Actual Disease Predicted 

Disease 

Probability 

(Healthy) 

Probability 

(Diseased) 

111 Leaf Healthy Healthy 0.95 0.05 

112 Fruit Apple Scab Apple Scab 0.68 0.32 

113 Leaf Early Blight Early Blight 0.81 0.19 

114 Fruit Citrus Canker Citrus Canker 0.93 0.07 

115 Stem Wheat Rust Wheat Rust 0.58 0.42 

116 
Leaf Powdery 

Mildew 

Powdery Mildew 

0.88 0.12 

117 Fruit Black Sigatoka Black Sigatoka 0.73 0.27 

118 Stem Late Blight Late Blight 0.63 0.37 

119 Leaf Healthy Healthy 0.95 0.05 

120 Fruit Apple Scab Apple Scab 0.68 0.32 

 

Table 4: Comparison of Evaluation parameter of Deep learning model 

Model Accuracy Precision Recall F1 Score Specificity ROC AUC Score 

CNN 94.56 92.53 95.63 93.74 90.23 96.44 

ResNet-50 97.52 94.78 97.80 94.56 92.20 97.55 

 

A detailed comparison of the assessment parameters 

for CNN and ResNet-50, two deep learning models 

utilised for plant disease monitoring and detection, is 

given in Table 4. These characteristics provide 

important information about how well the models 

distinguish plants as healthy or ill.  Accuracy quantifies 

how accurate a model's predictions are overall. With an 

accuracy of 97.52%, ResNet-50 beats CNN in this 

comparison, while CNN manages a respectable 

94.56%. This suggests that ResNet-50 has a marginally 

higher overall right classification rate, which increases 

its dependability in determining the health status of 

plants. 

 
Figure 6: Representation of Evaluation Parameter 

Accurately making positive predictions is a measure of 

a model's precision. With a precision score of 94.78%, 

ResNet-50 outperforms other models in terms of false 

positive predictions. CNN follows closely, achieving a 

92.53% accuracy rate. ResNet-50 is the recommended 

option in this context since its high precision is 

essential for avoiding pointless treatments or 

interventions in the field. Evaluates a model's capacity 

to identify real-world positive examples. With a recall 

of 97.80%, ResNet-50 outperforms other models in 

terms of accurately recognising sick plants. With a 
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95.63% memory rate, CNN fares similarly well; 

however, ResNet-50 appears to be more adept at 

identifying sick plants, as seen by its marginally higher 

recall rate. 

The F1 score offers a fair evaluation of a model's 

performance and is calculated as the harmonic mean of 

precision and recall. With an F1 score of 94.56%, 

ResNet-50 demonstrates a generally balanced 

performance. CNN has an excellent F1 score of 

93.74% as well. ResNet-50 appears to achieve a better 

balance between precision and recall, as seen by its 

marginally higher F1 score. The capacity of a model to 

accurately detect negative cases is measured by 

specificity. CNN comes in second with 90.23% 

specificity, and ResNet-50 earns 92.20%. According to 

these findings, ResNet-50 performs marginally better 

in accurately classifying healthy plants, which lowers 

the possibility of false alarms. 

 

Figure 7: Result for Potato leaf early disease detection 

This indicates how well a model can differentiate 

between different classes. With a score of 97.55%, 

ResNet-50 surpasses CNN once more, demonstrating 

its better discriminating ability. CNN receives a score 

of 96.44%, indicating strong discrimination as well. 

The both the CNN and ResNet-50 models perform 

remarkably well in plant disease diagnosis and 

monitoring when assessment parameters are compared. 

In terms of accuracy, precision, recall, F1 score, 

specificity, and ROC AUC score, ResNet-50 shows a 

slight edge, indicating that it is a somewhat more 

dependable and well-rounded option for this particular 

task. The selection between the two models, however, 

could be influenced by additional elements, such as the 

availability of training data and processing power. 

These findings highlight the promise of deep learning 

models for managing plant diseases and precision 

agriculture, opening the door to more effective and 

efficient crop protection techniques. 
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Figure 8: Confusion Matrix 

7. Conclusion 

A novel and revolutionary approach to contemporary 

farming is the use of deep learning algorithms in 

precision agriculture for precise disease detection and 

ongoing plant disease monitoring. By increasing crop 

output, decreasing resource waste, and lessening its 

environmental impact, this cutting-edge technology has 

the potential to completely transform the agriculture 

sector. We are able to accomplish more accurate and 

fast disease identification and control by combining 

state-of-the-art monitoring systems with powerful deep 

learning models like CNN and ResNet-50. With 

respect to disease identification, the models ResNet-50 

in particular have shown outstanding performance, 

exhibiting excellent F1 scores, recall, accuracy, and 

precision. ResNet-50 is a helpful tool for farmers and 

other agricultural stakeholders because of its 

superiority over the CNN model. Moreover, real-time 

data collecting made possible by the continuous 

monitoring system enables quick answers to new 

problems with plant health. Farmers can maximise 

resource efficiency and boost crop output by using AI 

to make well-informed decisions about irrigation, 

treatment, and other interventions. The system exhibits 

a high degree of adaptability to diverse agricultural 

contexts, providing customised solutions to the distinct 

challenges posed by distinct crops and geographical 

locations. Looking ahead, it is certain that intelligent 

agricultural systems and precision agriculture will keep 

developing and become increasingly important in 

tackling the world's food security issues. The 

incorporation of AI-driven innovations, including 

drones and self-driving tractors, significantly simplifies 

routine agricultural operations. The development of 

AI-driven solutions and the expansion of plant disease 

datasets, as demonstrated in this research, will enable 

farmers to make informed decisions based on data and 

promote effective and sustainable farming 

practises.The enormous potential of deep learning 

algorithms for plant disease monitoring and detection 

has been shown by this work. We are well-positioned 
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to usher in a new era of precision agriculture that 

guarantees abundant harvests, reduces environmental 

impact, and ensures the sustainability of food supply in 

the future by fusing technical innovation with 

agricultural experience. 
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