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Abstract 
The Industrial Internet of Things (IIoT), which uses devices with sensors to provide real-time insights into 

crucial processes, has completely changed how industries function. However, there are many problems 

associated with the sheer volume and speed of data created in industrial environments, particularly when it 

comes to anomaly detection. The development of edge-based real-time sensor data processing techniques was 

required because traditional cloud-based solutions frequently experience latency problems and privacy issues. 

This study suggests a novel method for IIoT applications that focuses on processing sensor data at the edge, 

close to the data source, for anomaly identification. We offer real-time analysis of sensor data without the 

need for continuous data transfer to the cloud by utilising the processing capabilities of edge devices, such as 

industrial gateways and embedded systems. To find anomalies in streams of real-time sensor data, our 

methodology integrates data pre-processing, feature engineering, and machine learning algorithms. This 

strategy not only lessens the strain on the network's bandwidth but also ensures quick reaction to urgent 

situations, cutting downtime and boosting operational effectiveness. Proposed system has adaptive learning 

features that enable it to continuously adjust to altering ambient factors and sensor properties, enhancing the 

precision of anomaly detection over time. We provide experimental findings that show how our edge-based 

anomaly detection system performs well in diverse industrial situations. The results show that, while protecting 

data privacy and minimising latency, our methodology outperforms conventional cloud-based methods in terms 

of anomaly detection performance. 
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1. Introduction 

The Industrial Internet of Things (IIoT) has become a 

powerful force that is changing the way industrial 

operations are conducted. Industries now have the 

ability to gather, monitor, and analyse massive 

amounts of data in real-time thanks to IIoT systems, 

which connect a variety of sensors, actuators, and 

devices. This abundance of data offers a significant 

opportunity for streamlining operations, cutting 

expenses, and raising effectiveness all around. The 

significant problem presented by this data-driven 

revolution is how to properly identify anomalies in the 

sea of sensor data produced in industrial settings. 

Anomalies, or variations from typical patterns or 

behaviours, might indicate serious problems such 

equipment failure, anomalies in the production process, 

or security breaches [1]. In order to avoid catastrophic 

failures, reduce downtime, and ensure the safety of 

both people and assets, anomalies must be identified as 

soon as possible. Traditional approaches to anomaly 

detection frequently rely on cloud-based technologies 
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that send data from edge devices to distant servers for 

examination. Although these cloud-centric strategies 

have shown to be successful in a variety of situations, 

they do have some drawbacks when used with IIoT 

applications [2]. 

 

Figure 1: System Architecture for Edge-Based Real-Time Sensor Anomaly Detection 

Latency is one of the main issues with IIoT cloud-

based anomaly detection. Large amounts of sensor data 

must be transmitted via networks to centralised cloud 

servers, which causes inevitable delays in the analysis 

procedure. Even minor delays might have enormous 

repercussions in situations where quick decision-

making is required, like in manufacturing or energy 

generation. These [3] delays may also result in higher 

operational costs and decreased effectiveness. Data 

privacy is another important concern. Industrial sensor 

data frequently includes private information about 

exclusive procedures and technologies. This data could 

be subject to security threats and difficulties with 

regulatory compliance if it is sent to the cloud. In many 

industries, maintaining the confidentiality and integrity 

of sensitive industrial data is a need. A paradigm [4] 

shift towards edge-based real-time sensor data 

processing for anomaly detection is gaining traction in 

order to address these issues and realise the full 

potential of IIoT. An appealing alternative is provided 

by edge computing, a decentralised computing strategy 

that moves computational power closer to the data 

source. This method minimises latency and eliminates 

the need for continuous data transmission to faraway 

servers by processing sensor data close to the sensors 

themselves. By containing sensitive data inside the 

boundaries of the industrial facility, it also addresses 

privacy concerns [28]. 

Key contribution of paper is given as: 

• To reduce in anomaly detection for Industrial 

IoT applications, proposed research advances 

the field. We reduce analysis time delays by 

processing sensor data close to the data 

source, enabling quick reactions to urgent 

situations. 

• Enhancing data security and regulatory 

compliance is essential in fields where 

confidentiality is of utmost importance. 

• To improve the accuracy of anomaly detection 

over time, enhancing the reliability of 

industrial processes.  

The goal of this project is to advance the state-of-the-

art in edge-based real-time sensor data processing for 

industrial IoT applications that detect anomalies. We 

bring forth a thorough technique that makes use of the 

computing capacity of edge devices, such as embedded 

systems and industrial gateways, to enable quick and 

effective analysis of sensor data streams. Our strategy 

includes machine learning, feature engineering, and 

data pre-processing, all of which are carried out at the 

edge, near to the sensors. Accurate, adaptable, and 

resilient real-time anomaly detection skills are sought 

after. 

2. Related Work 

The study of edge-based real-time sensor data 

processing for anomaly detection in Industrial Internet 

of Things (IIoT) applications expands on a body of 

prior research in a number of crucial areas. To 

highlight the developments, [31] difficulties, and 

insights that have influenced the creation of edge-based 

anomaly detection systems in industrial contexts, we 

review the pertinent literature in this section. In recent 

years, edge computing's proliferation in the IIoT has 

drawn a lot of attention. In order to process data and 

run analytics closer to the data source, edge computing 
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makes use of the computational power of edge devices. 

This reduces latency and network overhead. 

Researchers have looked into designs, resource 

management, and deployment methods as they relate to 

edge computing. "Edge Computing: A Primer" [5]  and 

"Fog and Edge Computing: Principles and Paradigms" 

[6] are notable works in this field. These foundational 

studies establish the basis for effective data processing 

and anomaly detection at the edge by laying the 

foundations for the integration of edge computing into 

IIoT systems. 

A important part of IIoT systems is anomaly detection, 

which looks for patterns in sensor data that are 

unexpected or deviate from expected behaviour. A 

number of approaches, including as statistical 

methodologies, machine learning algorithms, and deep 

learning models, have been put forth for anomaly 

identification [7]. Control charts and time-series 

analysis are two statistical process control (SPC) 

techniques that have been widely applied in industrial 

settings. Support vector machines (SVMs) and decision 

trees, which are based on machine learning, have also 

found use. Recurrent neural networks (RNNs) and 

convolutional neural networks (CNNs), in particular, 

[29], [30] have recently made strides in deep learning 

and have showed promise in detecting intricate patterns 

in sensor data. Comprehensive overviews of 

conventional and deep learning-based anomaly 

detection methods are given in "A Survey of Network 

Anomaly Detection Techniques" [8] and "A Survey of 

Deep Learning for Scientific Discovery" [9] 

respectively. These methods form the basis for creating 

algorithms for anomaly identification in edge 

environments. The shortcomings of cloud-centric 

techniques have prompted research into edge-based 

anomaly detection to arise. By processing sensor data 

locally, edge-based solutions strive to reduce the 

latency and privacy issues that cloud-based systems 

have. A development of edge computing, fog 

computing is described in "Fog Computing and Its 

Role in the Internet of Things" [10]. The authors also 

address how it might be used in IoT scenarios. The 

capability of fog computing to assist real-time data 

analytics and anomaly detection in IoT is highlighted. 

Similar to this,[11] article "Edge AI: The Confluence 

of Big Data and the Internet of Things" examines the 

fusion of edge computing and artificial intelligence 

(AI) methods, underlining the significance of edge AI 

for real-time decision-making, including anomaly 

detection [28]. 

In addition [31] to lowering latency, edge computing 

also tackles security and privacy issues related to 

cloud-based systems. Researchers have looked into 

edge environment-specific security methods and 

mechanisms. "Edge Computing Security: State of the 

Art and Challenges" [12] presents guidelines for 

protecting edge-based systems and offers insights into 

the security difficulties in edge computing. To protect 

sensitive data, privacy-preserving methods like 

federated learning and homomorphic encryption have 

been suggested. These privacy-preserving techniques 

are discussed in "Privacy-Preserving Machine Learning 

in Edge Computing" [13] highlighting their importance 

in edge-based anomaly detection where data 

confidentiality is important. To illustrate how well 

edge-based anomaly detection may be used, previous 

research has looked at a variety of industrial areas. For 

instance, [14] address a case study involving anomaly 

detection in a manufacturing plant utilising edge-based 

processing in "Real-time Anomaly Detection in the 

Industrial Internet of Things". They stress the 

advantages of real-time detection for minimising 

equipment breakdowns and streamlining 

manufacturing procedures. In a similar vein, [15] 

article "Edge Intelligence in the Industrial Internet of 

Things" illustrates how edge intelligence can improve 

predictive maintenance in industrial systems, lowering 

downtime and maintenance costs. The related research 

in the area of edge-based real-time sensor data 

processing for anomaly detection in industrial IoT 

applications spans a wide range of research, including 

edge computing, anomaly detection methods, security, 

privacy, and domain-specific use cases. This corpus of 

knowledge offers insightful perspectives and 

fundamental ideas that guide the creation of efficient 

edge-based anomaly detection systems adapted to the 

special difficulties of industrial environments. 
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Table 1: Summary of related work in the field of edge-based real-time sensor data processing 

Anomaly 

Detection 

Techniques 

Findings Insights Limitations Scope 

Statistical Process 

Control (SPC) [16] 

Effective in detecting 

simple anomalies in 

industrial processes. 

Suitable for well-

defined processes 

with consistent 

behaviour. 

Limited in capturing 

complex, evolving 

anomalies. 

Enhancement for SPC 

in dynamic industrial 

environments. 

Machine Learning 

Algorithms (e.g., 

SVM, Decision 

Trees) [17], [18] 

Good accuracy in 

detecting anomalies 

with adequate training 

data. 

Applicable in 

various industrial 

domains. 

Dependence on 

labelled data for 

training. 

Investigation of 

transfer learning for 

limited labelled data 

scenarios. 

Deep Learning 

Models (e.g., 

RNNs, CNNs) 

[19] 

Superior performance 

in capturing complex 

patterns in sensor 

data. 

Suitable for real-

time anomaly 

detection in dynamic 

environments. 

High computational 

and memory 

requirements. 

Optimization of deep 

learning models for 

edge devices. 

Fog Computing 

[20] 

Enables real-time 

analytics at the 

network edge, 

reducing latency. 

Effective in 

supporting IoT 

applications with 

low-latency 

requirements. 

Scalability challenges 

for handling large-

scale deployments. 

Research on 

distributed fog 

computing for 

scalability. 

Edge AI [21] Integrates edge 

computing with AI for 

real-time decision-

making. 

Enhances decision-

making capabilities 

in IIoT 

environments. 

Hardware constraints 

in edge devices may 

limit AI model 

complexity. 

Development of 

efficient edge AI 

algorithms for 

resource-constrained 

devices. 

Security and 

Privacy 

Mechanisms [22] 

Provides data security 

and privacy protection 

in edge environments. 

Ensures data 

confidentiality in 

edge-based anomaly 

detection. 

Complex key 

management in 

distributed edge 

systems. 

Exploration of 

lightweight security 

protocols for edge 

devices. 

Privacy-Preserving 

Techniques [23] 

Preserves data privacy 

while performing 

collaborative 

analytics. 

Protects sensitive 

industrial data in 

edge-based systems. 

Overheads in 

computation and 

communication for 

privacy-preserving 

methods. 

Advancement of 

efficient privacy-

preserving techniques 

for edge scenarios. 

Industrial IoT Use 

Cases [24] 

Demonstrates the 

applicability of edge-

based anomaly 

detection in real-world 

scenarios. 

Highlights benefits 

such as reduced 

downtime and cost 

savings. 

Limited scalability 

and generalization of 

use-case-specific 

solutions. 

Generalization of 

edge-based anomaly 

detection across 

diverse industrial 

sectors. 

 

3. Description of Dataset 

• Edge-IIoTset Cyber Security Dataset of IoT & 

IIoT 

IoT and IIoT cyber security has advanced significantly 

thanks to the Edge-IIoTset dataset. It provides a 

thorough testing environment for comparing intrusion 

detection systems in federated and centralised learning 

modes. This dataset's salient features include: 

• Seven-Layer Testbed: It mimics the design of IoT 

and IIoT systems and allows for security 

evaluation at multiple levels. 
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• Emerging Technologies: To stay current with 

changing cyber security concerns, the dataset 

contains cutting-edge technologies. 

• Diverse Device kinds: With over 10 different IoT 

device kinds, it offers a wide range for evaluating 

intrusion detection. 

Because it represents the complexity and challenges of 

real life, the data source aids in the development of 

effective intrusion detection algorithms. The Edge-IIoT 

platform is a key resource for advancing research into 

the cybernetic security of the Internet of Things and the 

Industrial Internet, as well as for aiding in the 

protection against a variety of cyberthreats. 

Researchers can develop and evaluate intrusion 

detection systems that are tailored for use with the 

Internet of Things and IIoT using the Edge-IIoT data 

repository. It is a noteworthy development in the area 

of cyber security because of its all-encompassing 

design, use of cutting-edge technology, and support for 

a variety of devices. The researchers can use this 

information to improve the strategies for safeguarding 

the Internet of Things (IoT) and Internet of Things 

(IIoT) ecosystems from electronic attacks. 

4. Proposed Methodology 

The IIoT methodology uses hybrid CNN + 

Autoencoder, Long-Short-Term Memory Networks 

(LSTM), Long-Short-Term Memory Networks (CNN), 

Convolutional Neural Networks (CNN), and LSTM for 

anomaly identification.  

Step 1: Data collection and Processing 

The data collected from the IIoT sensor data and these 

sensors can measure things like temperature, pressure, 

vibration, and more, which reflects the variety of data 

sources seen in an industrial context. 

• Data preprocessing: Remove noise, outliers, 

and missing values from the raw sensor data. 

To guarantee uniformity between scales, 

normalise or standardise the data. To capture 

temporal dependencies in the data, take into 

account time-series formatting. 

Stage 2: Feature Engineering: 

Transform the data into a time-series format, in which 

each data point is linked to a particular timestamp. The 

LSTM model can now recognise sequential 

dependencies in the data thanks to this change. 

• Windowing: Produce data windows or 

sequences with a set duration that are utilised 

as the LSTM model's input sequences. By 

doing this, the LSTM is guaranteed to be able 

to detect patterns over time. 

Stage 3: Model Architecture 

Use a CNN architecture to interpret sensor data as 

inputs that resemble images. By interpreting the sensor 

data as a grid that resembles a 2D image, this method 

enables the CNN to detect spatial patterns and 

correlations within the data.  

 

Figure 2: System flowchart of Edge-Based Real-Time 

Sensor Anomaly Detection 

To simulate the temporal dependencies, present in the 

sensor data, use an LSTM-based recurrent neural 

network. LSTMs are useful for time-series-based 

anomaly identification since they are well-suited for 

sequential data analysis. Deploy an autoencoder 

architecture, which consists of an encoder and a 

decoder [25]. The autoencoder learns a compressed 

representation of typical data and is trained to 

reconstruct input data. Anomalies can be detected by 

deviations from this representation. Combining the 

advantages of the CNN and Autoencoder models, CNN 
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+ Autoencoder Hybrid uses the CNN for feature 

extraction and the Autoencoder for anomaly detection. 

The Autoencoder detects anomalies based on feature 

reconstruction errors, whereas the CNN extracts 

pertinent features from the sensor data. 

a)  CNN: 

The CNN algorithm for processing sensor data in real-

time and finding anomalies in industrial IoT, Data 

preparation, and feature extraction with CNN [26], 

anomaly detection utilising feature representations, and 

continuous monitoring for adaptability are all part of 

the process. To further meet the demands of your 

industrial IoT application, you can further hone the 

CNN architecture and anomaly score function. 

Algorithm: 

Step 1: Data Collection and Preprocessing: 

• Mathematical Model: Let X represent the raw 

sensor data, where X is a matrix with 

dimensions (N,C,H,W), where N is the 

number of data samples, C is the number of 

channels (sensors), H is the height (time 

steps), and W is the width (sensor readings). 

• Preprocessing: Normalize and preprocess the 

data using X' = (X - μ) / σ, where μ is the 

mean and σ is the standard deviation 

calculated across the dataset. 

Step 2: Feature Extraction with CNN: 

• Mathematical Model: Apply a CNN for 

feature extraction. Let F(X') represent the 

feature maps extracted from the preprocessed 

data X' using the CNN. The CNN architecture 

can be represented as F(X') = CNN(X'). 

• CNN Layers: Specify the CNN layers with 

mathematical functions. For example, a 

typical CNN layer can be represented as  

𝑍_𝑙 =  𝑅𝑒𝐿𝑈(𝑊_𝑙 ∗  𝐴_{𝑙 − 1}  +  𝑏_𝑙) 

Where, Z_l is the output of layer l, W_l is the weight 

matrix, A_{l-1} is the activation from the previous 

layer, and b_l is the bias. 

Step 3: Anomaly Detection: 

• Detect anomalies based on extracted features. 

Define an anomaly score function S(F(X')) 

that quantifies the degree of deviation from 

normal patterns. 

• Thresholding: Set a threshold θ to classify 

data points as anomalies or normal: 

𝐴(𝑋′)  =  { 

  𝐴𝑛𝑜𝑚𝑎𝑙𝑦 𝑖𝑓 𝑆(𝐹(𝑋′))  >  𝜃 

  𝑁𝑜𝑟𝑚𝑎𝑙 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

} 

Step 4: Real-Time Edge Processing: 

• Deploy the CNN-based anomaly detection 

model to edge devices for real-time 

processing. 

• Streaming Data Processing: Continuously 

feed new sensor data X_t to the model, where 

t denotes the current time step. For each new 

input, compute F(X'_t) and S(F(X'_t)) in real 

time. 

• Threshold Comparison: Compare S(F(X'_t)) 

to the predefined threshold θ for real-time 

anomaly detection. 

𝑷𝒔𝒆𝒖𝒅𝒐 − 𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎: 

1. 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎: 

- 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝜇 𝑎𝑛𝑑 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝜎 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑛𝑡𝑖𝑟𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡. 

- 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎: 𝑋′ =  (𝑋 −  𝜇) / 𝜎. 

2. 𝐷𝑒𝑓𝑖𝑛𝑒 𝑎 𝐶𝑁𝑁 𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒. 

𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑑𝑎𝑡𝑎 𝑠𝑎𝑚𝑝𝑙𝑒 𝑋𝑖 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡{ 

− 𝐹𝑒𝑒𝑑 𝑋𝑖 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑡ℎ𝑒 𝐶𝑁𝑁 𝑚𝑜𝑑𝑒𝑙. 

− 𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑝𝑠 𝐹(𝑋𝑖) 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑡ℎ𝑒 𝐶𝑁𝑁} 

3: 𝐴𝑛𝑜𝑚𝑎𝑙𝑦 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛: 

- 𝐷𝑒𝑓𝑖𝑛𝑒 𝑎𝑛 𝑎𝑛𝑜𝑚𝑎𝑙𝑦 𝑠𝑐𝑜𝑟𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑆(𝐹(𝑋𝑖)) 

- 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑎𝑛𝑜𝑚𝑎𝑙𝑦 𝑠𝑐𝑜𝑟𝑒 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑑𝑎𝑡𝑎 𝑠𝑎𝑚𝑝𝑙𝑒 𝑋𝑖. 

4: 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑎𝑛𝑑 𝐴𝑛𝑜𝑚𝑎𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛: 

- 𝑆𝑒𝑡 𝑎 𝑝𝑟𝑒𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝜃 𝑓𝑜𝑟 𝑎𝑛𝑜𝑚𝑎𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛. 

-  𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑑𝑎𝑡𝑎 𝑠𝑎𝑚𝑝𝑙𝑒 𝑋𝑖 

{ 

𝐼𝑓 𝑆(𝐹(𝑋𝑖))  

>  𝜃, 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦 𝑋𝑖 𝑎𝑠 𝑎𝑛 𝑎𝑛𝑜𝑚𝑎𝑙𝑦. 

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦 𝑋𝑖 𝑎𝑠 𝑛𝑜𝑟𝑚𝑎𝑙 

} 

5: 𝑅𝑒𝑎𝑙 − 𝑇𝑖𝑚𝑒 𝐸𝑑𝑔𝑒 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔: 
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- 𝐷𝑒𝑝𝑙𝑜𝑦 𝑡ℎ𝑒 𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝐶𝑁𝑁 −

𝑏𝑎𝑠𝑒𝑑 𝑎𝑛𝑜𝑚𝑎𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒𝑙 𝑡𝑜 𝑒𝑑𝑔𝑒  

- 𝑑𝑒𝑣𝑖𝑐𝑒𝑠. 

         𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑛𝑒𝑤 𝑠𝑎𝑚𝑝𝑙𝑒 𝑋_𝑛𝑒𝑤: 

- 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑋_𝑛𝑒𝑤 𝑎𝑠 𝑖𝑛 𝑆𝑡𝑒𝑝 1. 

- 𝐹𝑒𝑒𝑑 𝑋_𝑛𝑒𝑤 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑡ℎ𝑒 𝑑𝑒𝑝𝑙𝑜𝑦𝑒𝑑 𝐶𝑁𝑁 𝑚𝑜𝑑𝑒𝑙. 

- 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑆(𝐹(𝑋_𝑛𝑒𝑤)) 𝑖𝑛 𝑟𝑒𝑎𝑙 − 𝑡𝑖𝑚𝑒. 

- 𝐶𝑜𝑚𝑝𝑎𝑟𝑒 𝑆(𝐹(𝑋_𝑛𝑒𝑤)) 𝑡𝑜 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝜃 𝑓𝑜𝑟 𝑟𝑒𝑎𝑙 −

𝑡𝑖𝑚𝑒 𝑎𝑛𝑜𝑚𝑎𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛. 

- 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑦 𝑋𝑛𝑒𝑤𝑎𝑠 𝑛𝑜𝑟𝑚𝑎𝑙 𝑜𝑟 𝑎𝑛 𝑎𝑛𝑜𝑚𝑎𝑙𝑦 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛  

- 𝑡ℎ𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. 

b) LSTM: 

A common recurrent neural network architecture used 

in Industrial IoT anomaly detection is Long Short-

Term Memory (LSTM) [27]. LSTMs are good in 

identifying deviations from predicted patterns in sensor 

data, ensuring early identification of anomalies in 

crucial industrial processes. They excel at modelling 

sequential data. 

Step 1: Data Collection and Preprocessing: 

- Collect raw sensor data as a sequence X with 

dimensions (N, C, T), where N is the number of 

data samples, C is the number of sensor channels, 

and T is the number of time steps (sequential data 

points). 

- Preprocess the data by normalizing it: X' = (X - μ) 

/ σ, where μ is the mean and σ is the standard 

deviation calculated across the dataset. 

Step 2: LSTM Model Architecture: 

- Define the LSTM model architecture as a 

sequence of LSTM layers. 

- At each time step t, the LSTM computes hidden 

states h_t and cell states c_t based on the input 

sequence X: 

ℎ_𝑡, 𝑐_𝑡 =  𝐿𝑆𝑇𝑀(𝑋[: , : , 𝑡], ℎ_𝑡 − 1, 𝑐_𝑡 − 1) 

• The final output O of the LSTM can be 

obtained from the last time step T as: O = h_T 

Step 3: Anomaly Detection: 

• Detect anomalies based on the LSTM model's 

output O. 

• Define an anomaly score function S(O) that 

quantifies the degree of deviation from normal 

patterns. 

 

 

Step 4: Thresholding and Anomaly Classification: 

• Set a predefined threshold θ for anomaly 

detection. 

For each data sample: 

   If S(O) > θ, classify the sample as an 

anomaly. 

   Otherwise, classify it as normal. 

Step 5: Real-Time Edge Processing: 

• Deploy the trained LSTM-based anomaly 

detection model to edge devices. 

• Continuously receive new sensor data 

sequences in real-time. 

For each new sample: 

   Preprocess it as in Step 1. 

   Feed it through the deployed LSTM model. 

   Calculate S(O) in real-time. 

   Compare S(O) to the predefined threshold θ 

for real-time anomaly detection. 

   Classify the sample as normal or an 

anomaly based on the threshold. 

c) Autoencoder: 

Neural networks called autoencoders are made to 

encode input data into a lower-dimensional 

representation (encoding), and then decode it to 

reassemble the original data. The encoder gains the 

ability to identify key characteristics and patterns in the 

input data during training. By comparing the 

reconstruction error (MSE) between the original data 

and the recreated data, anomalies are found. High 

reconstruction error is a sign of anomalies since the 

autoencoder has trouble recreating odd patterns. When 

there are considerable departures from expected 

behaviour in sensor data, autoencoders are useful for 

finding anomalies. They are adaptable to many 

industrial IoT applications, enabling prompt corrective 

measures and early identification of problems. 

Autoencoders are a useful tool in industrial anomaly 

detection because of their simplicity, adaptability, and 

capacity to record complicated patterns. 
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Encoder: 

• Input: X - Raw sensor data with dimensions 

(N, C), where N is the number of data 

samples, and C is the number of features 

(sensor readings). 

• Encoding Function:  

𝐸(𝑋)  =  𝑅𝑒𝐿𝑈(𝑊𝑒 ∗ 𝑋 +  𝑏𝑒) 

Where, We -->  is the encoding weight 

matrix, and be is the encoding bias vector. 

Decoder: 

• Decoding Function:  

𝐷(𝑍)  =  𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑑 ∗ 𝑍 +  𝑏𝑑) 

Where, Z is the encoded representation. 

• Output: X^ - Reconstructed data. 

Loss Function: 

Use Mean Squared Error (MSE) loss:  

𝐿(𝑋, 𝑋^)  =  (1/𝑁) ∗  ∑(𝑖 = 1 𝑡𝑜 𝑁) (𝑋𝑖 −  𝑋^𝑖)^2. 

d) CNN + Autoencoder: 

A robust method for anomaly detection in Industrial 

Internet of Things (IIoT) environments is presented by 

the combination of Convolutional Neural Networks 

(CNNs) and Autoencoders. While autoencoders may 

capture intricate patterns in the latent space of the data, 

CNNs are excellent at extracting features from spatial 

data. In this hybrid model, CNNs preprocess 

unprocessed sensor input to separate out the pertinent 

features, which are subsequently sent into an 

Autoencoder for reconstruction. Anomalies are found 

using differences between the original and recreated 

data. By combining the best features of both 

architectures, this fusion makes it possible to detect 

small anomalies that are spatially spread, which is 

essential for protecting vital industrial processes in 

IIoT applications. 

Step 1: Data Preprocessing 

• Input: Raw sensor data X with dimensions 

(N,C,H,W), where N is the number of data 

samples, C is the number of channels (sensor 

types), H is the height (time steps), and W is the 

width (sensor readings). 

• Normalize the data: X' = (X - μ) / σ, where μ is 

the mean and σ is the standard deviation 

computed across the dataset. 

 

Step 2: Feature Extraction with CNN 

• Apply CNN architecture to capture spatial 

patterns in the data. 

• Convolutional Layers: Perform convolutions with 

weight matrix W and bias b using the ReLU 

activation function: 

𝑍𝑖 =  𝑅𝑒𝐿𝑈(𝑊𝑖 ∗  𝑋′ +  𝑏𝑖) 

Where, i represent the layer number. 

• Pooling Layers: Utilize pooling layers (e.g., max-

pooling) to down-sample and retain important 

features. 

Step 3: Encoding with Autoencoder 

• Define an Autoencoder architecture consisting 

of an Encoder (E) and Decoder (D). 

• Encoder: Transform the CNN output into a 

lower-dimensional latent space Z: 

𝑍 =  𝐸(𝑍𝑖). 

• Decoder: Reconstruct the data from the latent 

space: X'' = D(Z). 

Step 4: Loss Calculation 

• Calculate the loss between the original 

normalized data X' and the reconstructed data 

X'': 

𝐿(𝑋′, 𝑋′′)  =  (1/𝑁)  ∗  ∑(𝑖

= 1 𝑡𝑜 𝑁) ||𝑋𝑖′ −  𝑋𝑖′′||^2. 

Step 5: Anomaly Detection 

• Anomalies are identified by comparing the loss 

L(X', X'') for each data sample to a predefined 

threshold θ. 

𝐼𝑓 𝐿(𝑋′, 𝑋′′)  >  𝜃 

• Classify the data sample as an anomaly; 

otherwise, label it as normal. 

Step 6: Real-Time Edge Processing 

• Deploy the trained hybrid model to edge devices. 

• Continuously pre-process and analyze new sensor 

data. 

• Follow Steps 2 to 5 for real-time anomaly 

detection, comparing L(X', X'') to θ to classify 

incoming data as normal or anomalous. 

This hybrid CNN + Autoencoder algorithm combines 

CNN's spatial feature extraction capabilities with 
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Autoencoder's ability to capture complex patterns in 

data's latent space. It efficiently detects anomalies in 

IIoT environments by leveraging the strengths of both 

architectures. 

Stage 4: Learning and Training: 

Preprocessed data should be divided into training and 

validation sets. The validation set aids in monitoring 

model performance and avoiding overfitting while the 

training set is used to train the models. Train the CNN 

and LSTM models using the time-series data that has 

been prepared. To ensure convergence and effective 

model performance, optimise hyper parameters like 

learning rates and batch sizes. 

• Training the autoencoder: Do this by feeding 

it training data. The model gains the ability to 

precisely reproduce typical data. The 

computation of anomaly scores is dependent 

on the reconstruction mistakes. 

• Training the CNN + Autoencoder hybrid 

model, which combines the CNN for feature 

extraction and the Autoencoder for anomaly 

scoring, is known as hybrid model training. 

Balance feature learning and anomaly 

detection by fine-tuning the model. 

Stage 5: Anomaly Detection: 

Calculate anomaly ratings for each data point 

depending on parameters particular to the model. This 

entails computing reconstruction errors for the 

Autoencoder model, whereas the hybrid model might 

take into account a combination of CNN-extracted 

features and Autoencoder reconstruction mistakes. 

Establish a data point threshold above which data 

points are considered anomalous (or "thresholding"). 

The threshold may be established using a statistical 

analysis of the training data or subject-matter 

knowledge. 

Stage 6: Edge Real-Time Processing: 

• Implement the trained models on gateways or 

edge devices placed close to the sensors for 

deployment. This makes it possible to process 

sensor data in real time without constantly 

sending data to a central server. 

• Processing of Streaming Data: For real-time 

anomaly detection, feed sensor data 

continuously to the deployed edge models. 

Anomalies are quickly identified and marked 

as a result of data processing at the edge. 

 

Stage 7: Monitoring and Evaluation: 

• Performance Metrics: Use the proper metrics, 

such as precision, recall, F1-score, and area 

under the ROC curve (AUC), to assess the 

model's performance. Evaluate the models' 

precision in detecting anomalies. 

• Continuous Monitoring: Keep an eye on the 

model's performance in the real-world setting. 

Set up procedures for routine model retraining 

so they can adjust to shifting circumstances 

and data distributions. 

This approach allows edge-based real-time sensor data 

processing for anomaly detection in IIoT applications 

to take advantage of deep learning models, ensuring 

accurate and prompt identification of anomalies while 

minimising data transfer overhead. A flexible 

framework for resolving the particular problems 

presented by industrial sensor data is provided by the 

combination of CNNs, LSTMs, Autoencoders, and 

hybrid techniques. 

5. Result and Discussion 

In the field of anomaly detection, assessing the 

performance of various models is crucial to 

determining how well they can spot departures from 

the norm. LSTM (Long Short-Term Memory), AE 

(Autoencoder), and the hybrid model CNN+AE 

(Convolutional Neural Network + Autoencoder) are 

the four different models for which the evaluation 

parameters are summarised in Table 2. A fundamental 

parameter called accuracy assesses how accurate 

anomaly detection is all in all. CNN+AE stands out 

among the models with an accuracy of 97.51%, 

indicating that it can consistently make the right 

classification. The accuracy of the CNN is closely 

followed at 92.32%, while that of the LSTM and AE is 

89.22% and 91.78%, respectively. With a precision of 

96.58%, CNN demonstrates its skill in accurately 

identifying true anomalies among all identified 

anomalies. Strong precision ratings for LSTM and AE 

are 92.8% and 94.57%, respectively. A satisfactory 

precision of 96.56% is displayed by the hybrid 

CNN+AE. 
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Table 2: Summary of evaluation parameter for 

Anomaly detection 

Evaluation 

Parameter 
CNN LSTM AE CNN+AE 

Accuracy 92.32 89.22 91.78 97.51 

Precision 96.58 92.8 94.57 96.56 

Recall 87.56 90.22 75.21 87.54 

F1-Score 93.2 76.56 85.66 92.51 

Area Under ROC 

(AUC-ROC) 
95.12 89.85 93.22 95.66 

Area Under PR 

(AUC-PR) 
97.23 85.23 86.51 90.21 

 

Recall shows LSTM leading the pack at 90.22%, 

showing the model's ability to properly identify 

anomalies among all real anomalies. CNN comes in 

second at 87.56%, while AE comes in third with 

75.21%. Recall rates for the hybrid CNN+AE are 

87.54%.  

 

 

 

 

 

 

Figure 3: Representation of evaluation parameter for Anomaly detection 

With an F1-Score of 93.2%, the F1-Score, which 

strikes a compromise between precision and recall, 

emphasises the CNN's robustness. While the LSTM 

model does manage to achieve a fairly high level of 

precision, its F1-Score is negatively influenced by 

lower recall, resulting in a score of 76.56%. The F1-

Score for AE is 85.66%, while the combined CNN+AE 

score of 92.51% is impressive. CNN boasts a 

remarkable AUC-ROC of 95.12%, which indicates 

how well the model can distinguish between regular 

and abnormal data points. Following LSTM are AE 

(93.22%), CNN+AE, and the hybrid (95.66%). CNN 

has the highest area under the PR curve (AUC-PR), 

which measures the precision-recall trade-offs. Scores 

for the LSTM are 85.23%, AE are 86.51%, and the 

CNN+AE hybrid is 90.21%. The hybrid CNN+AE 

model regularly exhibits outstanding performance 

across a range of assessment measures, making it a 

good candidate for tasks requiring anomaly detection. 

While LSTM displays great recall ability, CNN excels 

in accuracy and precision. Specific use cases and the 

relative weighting of recall, precision, and overall 

accuracy in the context of the current anomaly 

detection problem should be taken into account while 

selecting one of these models. 
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Figure 4: Comparative Analysis of Evaluation metrics 

Table 3: Confusion Matrix for Edge-Based Real-Time Sensor Data Processing 

Evaluation Parameter CNN LSTM AE CNN+AE 

True Positive (TP) 284 210 244 320 

True Negative (TN) 1125 990 1020 1240 

False Positive (FP) 47 66 47 45 

False Negative (FN) 85 110 102 89 

False Positive Rate (FPR) 42.52 74.23 56.2 38.52 

False Negative Rate (FNR) 25.12 39.54 32.11 22.71 

 

For the evaluation of Edge-Based Real-Time Sensor 

Data Processing employing different algorithms, 

including CNN, LSTM, Autoencoder (AE), and a 

combination of CNN and Autoencoder (CNN+AE), 

Table 3 provides the Confusion Matrix. A essential 

tool for evaluating the effectiveness of binary 

classification models, the confusion matrix sheds light 

on how well they can distinguish between typical and 

abnormal situations. The matrix's True Positive (TP) 

values show the number of anomalies that were 

successfully recognised, meaning that the model 

accurately labelled the event as an anomaly even when 

it actually was an anomalous.  

 

Figure 5: Confusion matrix of Model 
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For instance, the CNN+AE model achieved 320 True 

Positives, demonstrating that it accurately and 

successfully identified 320 anomalies. True Negative 

(TN) numbers, on the other hand, represent the volume 

of accurately identified normal occurrences. The model 

properly classified these occurrences as normal when 

they actually were normal. With 1240 True Negatives, 

CNN+AE excelled in this area, displaying its mastery 

at accurately labelling typical data items. The amount 

of occasions when regular occurrences were 

mistakenly labelled as anomalies is known as false 

positives (FP).  The number of anomalies that were 

incorrectly labelled as normal is known as the False 

Negative (FN) rate. A False Negative is a situation 

when the model misidentified an actual abnormality. 

CNN had 85 of these occurrences, demonstrating its 

poor capacity to identify these anomalies. The model's 

propensity to label typical occurrences as anomalies is 

measured by the false positive rate (FPR). Better 

performance in avoiding false alarms is indicated by a 

lower FPR. CNN+AE was able to reconcile effective 

anomaly detection with reducing false alarms because 

to its comparatively low FPR of 38.52. The False 

Negative Rate (FNR) gauges how well the model can 

detect anomalies. Better anomaly detection is indicated 

by a lower FNR. With a low FNR of 22.71, CNN+AE 

demonstrated its skill at detecting anomalies with a low 

rate of misses. In conclusion, the Confusion Matrix 

offers a thorough analysis of how various algorithms 

perform when used in the context of Edge-Based Real-

Time Sensor Data Processing. These metrics TP, TN, 

FP, FN, FPR, and FNR allow us to assess the 

advantages and disadvantages of each model. A 

potential option for real-time anomaly detection in 

industrial IoT applications, the results show that the 

CNN+AE model achieved an outstanding balance 

between accuracy in detecting abnormalities and 

minimising false alarms. 

 
Figure 6: Accuracy comparison representation 

Table 4: Result Comparison of Evaluation parameter 

MAE, MSE and MCC 

Evaluation 

Parameter 
CNN LSTM AE CNN+AE 

Mean 

Absolute 

Error 

(MAE) 

88.25 14.12 10.5 79.52 

Mean 

Squared 

Error (MSE) 

18.11 36.2 24.2 18.02 

Matthews 

Correlation 

Coeff. 

75.41 55.28 74.51 85.1 

The assessment metrics Mean Absolute Error (MAE), 

Mean Squared Error (MSE), and Matthews Correlation 

Coefficient (MCC) for various anomaly detection 

models, including CNN, LSTM, Autoencoder (AE), 

and the hybrid CNN+AE technique, are thoroughly 

compared in Table 4. The CNN+AE model 

outperforms the other models in terms of MAE with a 

value of 79.52, showing that it is more effective than 

the others at predicting anomalies with reduced error. 

While AE and CNN display even higher MAE values, 

LSTM comes in second with a much higher MAE of 

14.12, indicating relatively more prediction errors. 

MSE values for CNN+AE and CNN are identical and 

extremely low at 18.02 and 18.11, respectively, 

demonstrating the effectiveness of both services in 

reducing squared prediction errors. A less accurate 

prediction is indicated by the significantly higher MSE 

values of LSTM and AE. 

With a score of 85.1 in the context of MCC, the 

CNN+AE model excels once more, showcasing its 

sturdiness in catching real anomalies and minimising 

false positives and negatives. With an MCC of 55.28, 

LSTM comes in second, showing a respectable level of 

performance but with space for development. Anomaly 

detectors AE and CNN also earn respectable MCC 

ratings, demonstrating their potency. In conclusion, it 

can be seen from the comparison that the hybrid 

CNN+AE model regularly beats the other models in 

terms of MAE, MSE, and MCC, indicating its overall 

superiority in real-time anomaly detection for 

industrial IoT applications. Together, these evaluation 

criteria demonstrate the model's potency in reducing 

prediction errors and improving anomaly detection 

precision. 
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Figure 7: Comparison of Evaluation parameter MAE, 

MSE and MCC 

6. Conclusion 

Convolutional Neural Networks (CNN), Long Short-

Term Memory (LSTM), Autoencoder (AE), and the 

hybrid CNN+AE approach have all been evaluated for 

their performance in the context of edge-based real-

time sensor data processing for Industrial IoT (IIoT) 

applications. Though it performs admirably in 

detecting anomalies, LSTM falls short of CNN+AE in 

terms of MAE and MSE despite having a reasonably 

high MCC of 55.28. Anomaly detection tasks are 

appropriate for AE and CNN, which both have 

respectable MCC scores. These results highlight how 

important it is to use hybrid models, such CNN+AE, 

for Edge-Based Real-Time Sensor Data Processing in 

IIoT applications. These models combine the spatial 

feature extraction powers of CNNs with the pattern 

recognition abilities of autoencoders, enhancing the 

accuracy and effectiveness of anomaly detection in 

complicated sensor data. For businesses looking to 

improve the integrity and dependability of their 

industrial processes by successfully spotting anomalies 

in real-time sensor data, the CNN+AE hybrid model 

offers an appealing option thanks to its continuously 

improved performance. 
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